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Abstract

We proved a common fixed point theorem involving two pairs of
weakly commuting mappings on a complete metric space and two fixed
point theorems in non-complete metric space, generalizing some results
of [4], [6].
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1.

Two mappings 5 and I of metric space (X, d) into itself are said to be weakly
commuting [9] if

d(S1z,15z) < d(Iz,5z), (V)z € X.

Two commuting mappings commute weakly but two weakly commuting
mappings do not necessarily commute (see [9]).

We consider the set £ of all real continuous functions g : [0, 00)® — [0, c0)
satisfying the following properties:
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(i) ¢ is nondecreasing in the 4th and 5th variable,

(ii) thereisan hy > 0an hy > 0such that A = hihy < 1andif u,v € [0, 00)
satisfy v < g(v,v,u,u+v,0)or v < g(v,u,v,u+v,0) then u < hyv and
if u,v € [0,00) satisfy u < g(v,v,u,0,u+v), or u < g(v,u,v,0,u+v),
then u < hyv,

(iii) if w € [0,00) is such that v < g(u,0,0,u,u) or u < ¢g(0,u,0,u,u) or
u < ¢(0,0,u,u,u), then u = 0.

Theorem 1. Let S and [ be weakly commuting mappings.and let T and J
be weakly commuting mappings of a complete metric space (X,d) into itself
satisfying the inequality
(1) d(5z,Ty)
< g(d(Iz,Jy),d(Iz,Sz),d(Jy, Ty),d(Iz, Ty),d(Sz, Jy)),

V)z,ye X
where g is in L. If the range of I contains the range of T and the range of
J contains the range of S and if one of S, T, I and J is conlinuous, then

S, T, I and J have a unique common fized point z, and z is the unique
common fized point of S and I and of T and J.

Proof. Let zo € X. Since the range of J contains the range of S and the
range of I contains the range of T we can choose z9,,, 2,41 and Z2,42 such
that

Sl?zn = J122n+1, T1E2n+1 = Il‘2n+2, n= 0, 1,2, e

Using (1) we have
d(5$2n, T332n+1) < g(d(hhn, J332n+1), d(1$2n, 5$2n), d(J$2n+1 , T$2n+1)a
d(1$2naT$2n+1); d(J$2n+1, 5$2n)) = g(d(T$2n—17 5$2n), d(T$2n—1, 5$2n)a
d(Szon, Txant1), d(TTon—1,Tx2041),0) < ¢(d(T22n-1, 5%2n),
d(Tzon_1,5%2),d(ST2n, T2on41), AT 2n—1, ST2n) + d(S2n, TT2n41),0)

since d(T$2n_1,T$2n+1) S d(T:EQn, S.Zizn) + d(5$2n,T$2n+1), and by prop-
erty (ii), we deduce that

d(Sxon, T2ony1) < h1d(Szon, TT2n-1)-
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Similarly,

d(Tx2n—1,5%2n) < had(ST2—2, TT2n-1)

and so

d(Szon, Twont1) < hd(STon—2, T2on_1)

from where we deduce that
d(SCL‘zn, Tl‘2n+1) S hnd(SIL‘o, T.’L’])

d(T.’Ifzn_}.l, 5'1'277,-}-2) S hghnd(s.’lo,T.’El)

for n =1,2,.... Since h < 1, we have that the sequence
{Szg,Tz1,522,...,TTon-1,5C2n, TCon41,..-}

is a Cauchy sequence. Since (X, d)is a complete metric space we deduce that
this sequence has a limit z in X and the subsequence {Sz3,} = {Jz2n41}
and {Tzon+1} = {I22n42} converge to the point z.

We suppose that the mapping [ is continuous, so that the sequences
{I?z3,} and {ISz3,} converge to the point Iz. Since S and I weakly com-
mute, we have

d(185z2n, SIzon) < d(Iz2,, STan)
so that the sequence {S/z3,} converges to the point Iz.
From

d(ST22n, TTony1) < 9(d(I*T2n, J22n41), d(I* 20y, STz2y),

d(Jz2n41, TZ2n41)y d(T*T 20, TT2041), A(S 1220, JTon11))

letting » — oo, we obtain
d(1z,2) < g(d(1z,2),0,0,d(1z,z2),d(1z, z)).

By property (iii) this implies Iz = z.

Since

d(S2,Txont1) < 9(d(12, JT2n41), d(I2, 52),
d(J$2n+1 y T.’L’2n+1), d(IZ, T.’L’2n+1), d(SZ, J.’L’Qn_H))

letting n» — oo, we have

d(Sz,z) < ¢(0,d(z,52),0,0,d(5z, z))
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and so, by (iii) we deduce that Sz = z.

Since the range of J contains the range of S, there is a 2/ € X such that
Jz' = z. We deduce that

d(2,T2') = d(52,T7) < g(d(Iz,J2"),d(Iz, Sz),d(J2', T%),d(12,T%),
d(5z,J2")) = g(0,0,d(z,T2"),d(z,Tz"),0)
and by (iii) we deduce that Tz' = z.
Since T' and J weakly commute, we have
d(Tz,Jz)=d(TJ2,JTZ') <d(JZ,T2') =0
and so Tz = Jz. We deduce that
d(2,Tz)=d(52,Tz) < g(d(Iz,Jz2),d(1z,S5z),
d(Jz,Tz),d(12,T2),d(5z,Jz)) = g(d(2,1%2),0,0,d(z,Tz),d(2,1%z))
and by (iii) we have z = Tz = Jz. Since Iz = 5z = z we deduce that

z=Tz=Jz=1z=5z.

If the mapping J is continuous the proof is similar.

We suppose that the mapping S or 7' is continuous. In a similar way
for the above and to the proof of Theorem 3 [4] we deduce that z is again a
common fixed point of S, T, I and J.

We suppose that there is a second common fixed point y of S and I. We
have that
d(Sy,Tz)=d(y,z) < g(d(1y,Jz),d(Iy, Sz),(Jz,Tz),

d(Iy,Tz),d(Sy,Jz2)) = g(d(y,2),0,0,d(y, 2),d(y, 2))

and for property (iii) it follows that y = 2. Similarly, it is proved that z is
the unique common fixed point of 7" and J.

Remark 1. In [3] Delbosco considered the set G of all continuous functions
g :[0,00)3 — [0, 00) satisfying the following properties:

() ¢(1,1,1) = h < 1.
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(i1)” let w,» > 0 be such that either v < g(u,v,v) or u < g(v,v,u) or
u < g(v,u,v). Then u < hv.

We observe that G C £. Remark 3 shows that G # L.

Corollary 1. (3], Th. 3) let S and I be weakly commuting mappings and
let T and J be weakly commuting mappings of a complete metric space (X, d)
into itself satisfying

(2)  d(Sz,Ty) < g(d(Iz,Jy),d(Iz,Sz),d(Jy, Ty)), (V)z,y€ X

where g is in G. If the range of I contains the range of T and the range of

J contains the range of S, and if one of S, T, I and J is continuous, then
S, T, I and J have a unique common fized point z. Further, z is the unique
common fized point of S and I and T and J.

Proof. We apply Theorem 1 since G C L.

Corollary 2. ([4], Th. 4) Let S and I be weakly commuting mappings of a
complete metric space (X, d) into itself satisfying the inequality

(3) d(Sz,Ty)

< max{cd(Iz,Jy),cd(Iz,Sz),cd(Jy,Ty),ad(Iz,Ty) + bd(Jy, Sz)},

for all z,y € X where a, b and ¢ are real numbers such that 0 < ¢ < 1,
0<a+b<1andcmax{a/(1—a),b/(1-0)} < 1. If the range of I contains
the range of T and the range of J contains the range of S, and if one of S,
T, I and J 1is continuous, then S, T, I and J have a unique fized point z.
Further, z is the unique common fized point of S and I and T and J.

Proof. We consider the function g : [0, 00)® — [0, 00)
9(z1, 2, T3, T4, ¢5) = max{ce;, cxy, €T3, 024 + bzs}

and observe that g € £. The result fO]lO-WS from Theorem 1.

Remark 2. We observe that the hypotheses about a, b, ¢ are to restrictive
in Corollary 2; it is sufficient to suppose that 0 < ¢ < 1,0<a+b< 1.
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Remark 3. We define a metric on X = {1,2,3,4} by

d(1,3) = d(1,4) = d(2,3) = d(2,4) = 1, d(1,2) = d(3,4) = 2.

Let I be identity on X and define S, T, J by
51=2,52=53=1, §4=3,

T1=T2=T3="T4=4,

J1=2,J2=1,J3=3, J4=4.

As has been shown in Example 3 [4], inequality (2) is not satisfied but
inequality (3) holds. We deduce that G # L.

Remark 4. We recall [11] that a generalized ¢-contraction is an application
T : X — X which satisfies the inequality

d(Tz,Ty) < ¢(d(z,y),d(z,Tx),d(y, Ty),d(z,Ty),d(y,Tz)), (V)z,y € X
where ¢ : R} — R, is increasing and has the property

xl_l)ﬂosup d(z,...,2) < t, (Y)t € (0,00).

For fixed point theorems concerning generalized ¢-contractions see C. B.
Ciri¢ [2], O. Hadzi¢ {5] and M. Taskovi¢ [10].

If we consider the family F of all real functions f : {0,00) — [0, 00) such
that f is increasing, continuous from the right and f(t) < ¢ for any ¢ > 0,
we have that if 5 and T are two mappings such that

d(Sz,Ty) < f(max{d(z,y),d(z, Sz),d(y, Ty), d(z,Ty),d(y, 5z)}),

(V)e,y € X
then S and T hava a unique common fixed point ([7])

D. Delbosko {3] proved that G ¢ F and so we have also that £ ¢ F (for
counterexample see Example 1 of [4]).
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2.

We recall the following

Theorem A. ([6], Th. 1) Let (X, d) be a metric space. Let T be a map of
X into itself such that

(1) dTz,Ty) < a(d(z,Tz)+ d(y,Ty)), 0 < a < 1/2, (V)z,y € X,
(i) T is continuous at a point v € X,

(1ii) there exists a point * € X such that the sequence of iterates {T™(z)}
has a subsequence {T™(z)} converging to u.

Then u is the unique fized point of T.

We generalize Theorem A with the following result

Theorem 2. Let (X,d) be a metric space and T be a map of X into itself
such that

(i) d(Tz,Ty) < g(d(z,y),d(z,Tz),d(y,Ty)) for allz,y € X whereg € G,
(i) T is continuous at a point u € X,

(iii) there exists a point x € X such that the sequence of iterates {T™(z)}
has a subsequence {T™(z)} onverging to u.

Then u is the unique fized point of T.

We will give an example of a mapping T that satisfies the conditions
given in Theorem 2 and to which Theorem A could not be applied.

Consider the mapping
1
T:00,1) = [0,5), T(a) = 3

and let suppose that there is a o € (0,1/2) so that (i) is satisfied for the
euclidean distance

d(Tz,Ty) < a(d(z,Tz) + d(y,Ty)), (V)z,y € [0,1).
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We would have that

' s y' 2:!: 2?/
— < ol — + —_

which is not satisfied for z > y = 0.

On the other hand, the function

1 1
9:10,00 = [0,00), g(z,9,2) = als +y +2), z <a<

is in the set G and
g(1,1,1)=3a < 1,

u < g(u,v,0) = g(v,u,v) = g(v,0,u4) = u< 20+ u)
2a
-«

= u(l—a)SZav:,*»uSl v

and we have

—2—a—_3a<:>—2~§3<:>2§3—3a<:>a§
11—« l—-«

Wl =

Hence
u < g(u,v,v) = g(v,u,v) = g(v,v,u) = v < (3a)v,

and for > y we have that (i) from Theorem 2 holds if and only if

- 2 2
$3yga(z—y+§+—§)¢>(5a—1)x+(1—a)y20

and so we can apply Theorem 2 to this function, but not Theorem A.

Proof of Theorem 2. The continnity at u implies that {T™*'z} converges
to Tu. Suppose u # Tu and consider two open balls B(u,r) and B'(Tu,r)
centered at u (resp. at T'u) and of radius r > 0 where r < d(u,Tu)/3.

We have that there is an integer N > 0 such that
T™z € B(u,r) and T™ 'z € B'(Tu,r)fori > N
and hence we obtain that

(%) d(T™z, T"*'z) > r for i > N.
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From the condition given in the theorem we obtain that

d(T™ 1z, T 2z)
< g(d(T™e, T e), d(T™ 2, T z), d(T™* 2, T+ z))

and so we deduce that

d(T™* 2, T *?%2) < hd(T™z, T 2).

For k > 7 > N we obtain
Cd(T™z, T™ 1) < hd(T™ 1z, T™2)

< RPA(T™ 2z, T™ 1) < ... < K™ Md(TYz, T z).

As k — 0o, the last expression approaches 0 and we obtain a contradic-
tion with relation (*). Hence Tu = u.

If «' is another fixed point of T we would obtain that

d(Tu, Tu') < g(d(u,u'), d(u, T'u), d(w', Tu'))
& d(u,u’) < g(d(u,v"),0,0) = d(u,u’) =0

and hence u = v/, i. e., u is the unique fixed point of T.

Now we recall that D. Delbosko [3] proved that every pair of T and § of
maps on a complete metric space (X, d) onto itself satisfying the condition

d(Sz,Ty) < g(d(z,y), d(z, 5z), d(y, Ty))
for all z,y € X, where ¢ is in G, have a unique common fixed point.

We will prove the following

Theorem 3. Let S and T be two maps of a metric space (X, d) into itself,
satisfying

(i) d(Sz,Ty) < g(d(z,y),d(z,Sz),d(y,Ty)) forallz,y € X and g € G,

(ii) there exists a point u € X so that S is continuous at u and T is
continuous at the point Su,
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(1) there exists a point ¢ € X such that the sequence {(T o $)'(z)} =
{(TS)*(z)} has a subsequence {(TS)*(z)} onverging to u.

Then u' = Su is the unique common fized point of T and S.

Proof. We have that
d(Sz,TSz) < g(d(z,Sz),d(z,Sz),d(Sz,TSz))

and so we obtain

(4) d(Sz,TSz) < hd(z, Sz)
A similar inequality can be likely proved

(5) d(STz,Tz) < hd(z,Tz).

in a similar argument.

We observe that

d(ST Sz, TSTSx)
< g(d(TSz,STSz),d(TSz,STSz),d(STSz,TSTSx))

leads to

d(STSz, TSTSz) < hd(TSzx,STSz).
Using inequality (5), we have
d(TSz,5TSz) < hd(Sz,TSz)

and
d(STSz,TSTSz) < h*d(Sz,TSz).

We deduce that
(6)  d(S(TS)* 'z, (T5)" ) <K*AS(TS)'a, (TS)"z).
Considering the sequence {(T'S)"z} and taking account of condition (ii)

we obtain

S(TS)"z — Su
(TSY"*e = TS(TS) s — TSu.
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From (6) we obtain that
lim d(S(TS)™z,(T§)“t1) =0

and so we have

d(Su,TSu)=0.

We have obtained that Su = v’ is a fixed point for T. Introducing in
inequality (i) we deduce that
d(Su',Tv') < g(d(u',u"),d(v', Su),d(v, Tu))
& d(Sd,u) < g(0,d(d, Su'),0)

and so ' = Su’.

Supposing that u” is another common fixed point of T and S we obtain

d(Su', Tu")y < g(d(u',u"),d(u, Su'), d(u", Tu"))
& du, ") < g(d(v,u"),0,0) => v =

and the theorem is proved.

To compare this theorem with Delbosco we see that we have omitted the
completness of the space and, instead, we have assumed conditions (ii) and
(iii). These two conditions together do not guarantee the completness of the

space.
Example' Let X = [031] n Q’ g($7ysz) = a(y + Z) with % < a <L % and
T,5:X — X, Tz =%, 5z =% and d the euclidean metric.

i) We have that

(&Y a5yl
16z 4 15y
Because a > % we have that
4 -4
o102 1 15y > Q2T Zalsy : xl, z,y €[0,1)N Q,

20 20 20
ii) S is continuous at 0 and 7 is continuous at 50 = 0.

iii) TSz = 55 and if we take z = 0, then the existence of a convergent
subsequence is evident.
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3.

As an application of foregoing, we prove a theorem on nonlinear functional
equations.

Let us consider the nonlinear functional equation
Az = Pz

in a complete metric space X, where A4 is a nonlinear operator of X onto itself
and P is also a nonlinear operator mapping. The condition of solvability of
this kind of functional equation was also investigated by R. Sen [8].

Theorem 4. Assume that there exists a > 0 such that d( Az, Ay) > ad(z,y)
for all x,y € X and let P be a nonlinear operator on X. If for somem € N,
P™~! commutes with A and

d(P™z,P™y) < ﬂg(d(Pm_laz, v), d(Pm_laz, A_lea:)
d(y, A1 P™z),d(P™ 'z, AT P™z)d(AT Pz, y))

for all z,y € X where § € (0,a] and g € L, then the equation Az = Pz has
one and only one solution.

Proof. Note that if Az = Ay then z = y so that A is bijective and therefore
A~! exists. Moreover, A~! commutes with P!,

We have

d(A7'P™z, A7 P™y) < éd(Pma:,Pmy)
gg(d(Pm'lz,y),d(Pm‘lz,A"lez), d(y, A" P™y),
d(P™ 1z, A7 P™y),d(AT Pz, y))

IN

and since P™~! commutes with A~'P™ we deduce from Theorem 1 (take
§ =T = A"'P™, I = P" ! and J the identity) that A~1P™ and P™!
have a unique common fixed point zg.

We have that
A—lpmillo = Pm_lillo = g

and we deduce A~1Pzy = zg. It follows that Pzg = Azo and the unicity is
immediate.
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Remark 5. Taking m = 1 and g : R® — Ry, g(z1, 3,73, %4,25) = hzy
with 0 < A < 1 we obtain a result of R. Sen [8]. Our generalization is
different from that of S. K. Chatterjea [1] because we do not assume the
continuity of A~'P, and the condition on P™ is also different.
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