Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 24, 2 (1994), 31-38

Review of Research Faculty of Science Mathematics Series

GENERALIZED CONTRACTIONS IN σ -COMPLETE VECTOR LATTICES

Vasile Berinde

Department of Mathematics, University of Baia Mare Victoriei, 76, 4800 Baia Mare, Romania

Abstract

A fixed point theorem for nonlinear generalized contractions in σ -complete vector lattices is given.

AMS Mathematics Subject Classification (1991): 47H10 Key words and phrases: σ -complete vector lattices, comparison operator, φ -contraction.

1. Introduction

Any metrical fixed point theorem is stated in terms directly related to the metric structure of the ambient space, i.e. metric space, K-metric space, locally convex or uniform space, etc. [11].

Many vector lattices which have importance in analysis do not possess such a structure. However, in order to obtain a metrical fixed point result, we can take d(x,y) = |x-y|, where $|x| = \sup\{x, -x\}$, instead of the usual distance of two elements x, y.

Several papers have been devoted to this subject: [8], [9], [13].

In this paper we shall generalize a result from the last above quoted papers, using the notion of φ -contraction (see [2], [3], [12]).

Referring to vector lattices and generalized contractions we shall follow, both in the terminology and notation, the monographs by Cristescu, R. [6], [7], and Rus, A. I. [12].

2. σ -complete vector lattices

Let (X, \leq) be an ordered set and $A \subset X$ a majorized (minorized) nonempty subset.

We denote by $\sup A$ (inf A) the supremum (infimum) of A.

If $A = \{x_j \mid j \in J\}$, then we denote $\sup A \text{ (inf } A) \text{ by } \bigvee_{j \in J} x_j \text{ (} \bigwedge_{j \in J} x_j \text{)}.$

A sequence $\{x_n\}$ in X is said to be increasing (decreasing) and we denote $x_x \uparrow (x_n \downarrow)$ if $x_n \leq x_{n+1}$, for each $n \in N$ $(x_n \geq x_{n+1}, \text{ respectively})$.

If $x_n \uparrow (x_n \downarrow)$ and $x = \bigvee_{n \in N} x_n (x = \bigwedge_{n \in N} x_n)$ we denote $x_n \uparrow x (x_n \downarrow x)$.

Definition 1. A sequence $\{x_n\}$ of elements from X (0)-converges to an element $x \in X$ if there exist two sequences $\{a_n\}, \{b_n\}$ in X such that

$$a_n \le x_n \le b_n$$
, for each $n \in N$,

and, in addition, $a_n \uparrow x$, $b_n \downarrow x$. We denote

$$x = (0) - \lim_{n} x_n$$
 or $x_n \to x$

Remark 1. If a sequence of X is (0)-convergent, then its (0)-limit is unique.

Definition 2. An ordered set X is called lattice if there exist $x \lor y$ and $x \land y$ for each $x, y \in X$.

A lattice X is called σ -complete if there exist $\sup A$ and $\inf A$ for each numerable subset A of X.

Let X be a linear space and $K \subset X$ a cone in X, i.e. a closed subset of X satisfying

$$K\cap (-K)=\{\emptyset\},\; K+K\subset K\;\; \text{and}\;\; t\cdot K\subset K\;\; \text{for all}\;\; t>0,$$

where \emptyset denotes the zero element of E.

The condition

$$x \le y$$
 iff $y - x \in K$

defines a partial linear order relation on X.

The linear space X endowed with this order relation is called *linear* ordered space, while K is termed its positive cone.

A vector (linear) lattice is a linear ordered space which is a lattice with respect to the considered order.

A vector lattice X is called σ -complete vector lattice if, for any bounded numerable subset A of X, there exist sup A and inf A.

Let X be a vector lattice and $x \in X$. Then we denote

$$\mid x \mid = \sup\{x, -x\},\$$

the modulus of x.

The following properties are immediate consequences of the above definitions (see [7]).

If X is a vector lattice, then

$$|\alpha x| = |\alpha| \cdot |x|, \ \alpha \in R;$$

$$||x| - |y|| \leq |x - y|,$$

for each $x, y \in X$.

In any linear ordered space we have

(4) If
$$x = (0) - \lim_n x_n$$
 and $x_n \ge 0$, $n \in \mathbb{N}$, then $x \ge 0$;

(5) If
$$0 \le x_n \le y_n$$
, for each $n \in N$ and $(0) - \lim_n y_n = 0$, then
$$(0) - \lim_n x_n = 0$$

Definition 3. Let X, Y be two linear ordered spaces. A mapping $U: X \to \mathbb{R}$ Y is called (0)-continuous in $a \in X$ if, for any sequence $\{x_n\}$ in X, such that $x_n \to^{\circ} a$, we have $U(x_n) \to^{\circ} U(a)$.

Definition 4. Let X be a linear ordered space and $\{x_n\}$ a sequence in X. We define

$$(0) - \sum_{n=1}^{\infty} x_n = (0) - \lim_{n} \sum_{j=1}^{n} x_j,$$

if the right-hand side limit exists, and we say that the series $\sum_{n=1}^{\infty} x_n$ is (0)-convergent.

If $\sum_{n=1}^{\infty} |x_n|$ is (0)-convergent we say that the series $\sum_{n=1}^{\infty} x_n$ is absolute (0)-convergent.

Lemma 1. (Cristescu, R. [7]). In a σ -complete vector lattice any absolute (0)-convergent series is (0)-convergent.

Definition 5. Let X be a vector lattice and let K be its positive cone. A mapping $\varphi: K \to K$ which satisfies:

(6)
$$\varphi$$
 is monotone increasing (isotone);

(7)
$$(0) - \lim_{n} \varphi^{n}(t) = \emptyset, \text{ for each } t \in K,$$

is called comparison operator $(\varphi^n \text{ stands for the nth iterate of } \varphi)$.

Remark 2. It is easy to see that a comparison operator possesses all the properties of comparison functions ([2], [3]). We need the following generalized ratio test in σ -complete vector lattices, proved in [4], [5] for series of real positive terms.

Theorem 1. Let X be a σ -complete vector lattice and let K be its positive cone.

If $\sum_{n=1}^{\infty} u_n$ is a series of positive terms in X (i.e. $u_n \in K \setminus \{\emptyset\}$) satisfying the following condition:

there exist an (0)-convergent series $\sum_{n=1}^{\infty} v_n$, $v_n \in K$ and a real number $a, 0 \leq a < 1$, such that

 $u_{n+1} \leq au_n + v_n$, for each $n \in N$ (fixed), then the series $\sum_{n=1}^{\infty} u_n$ is (0)-convergent.

Proof. It follows by analogous arguments to these in [4] or [5]. \Box

Definition 6. Let X be a σ -complete vector lattice and let K be its positive cone. An isotone mapping $\varphi: K \to K$ which satisfies the following convergence condition

(c) there exist an (0)-convergent series $\sum_{n=1}^{\infty} v_n$ in K and a real number $a, 0 \le a < 1$, such that

 $\varphi^{k+1}(t) \leq a\varphi^k(t) + v_k$, for each $t \in K$ and $n \in N$ (fixed), is called (c)-comparison operator.

Example. If X = R, the real axis, when $K = R^+$, a tipical comparison operator is $\varphi : R^+ \to R^+$,

$$\varphi(t) = at, \ 0 \le a < 1.$$

Lemma 2. Any (c)-comparison operator is also a comparison operator.

Proof. We apply Theorem 1. \square

Lemma 3. Let X be a σ -complete vector lattice, K its positive cone and $\varphi: K \to K$ a (c)-comparison operator. Let $s: K \to K$, given by

$$s(t) = \sum_{n=0}^{\infty} \varphi^k(t), \ t \in K.$$

Then φ is continuous in \emptyset .

Proof. See [2], [3] for the scalar comparison operators (comparison functions). \Box

3. Generalized contractions

Let X be a vector lattice and K its positive cone.

Definition 7. A mapping $f: X \to X$ is called φ - contraction if there exists a comparison operator $\varphi: K \to K$ such that

(8)
$$|f(x) - f(y)| \le \varphi(|x - y|), \text{ for each } x, y \in X.$$

Remark 3. Any φ -contraction is (0) - continuous, as, for each comparison operator we have

$$\varphi(t) \le t, \ t \in K.$$

The main result of this paper is given by

Theorem 2. Let X be a σ -complete vector lattice and $f: K \to K$ a φ -contraction, with φ (c)-comparison operator. Then

(9)
$$F_f = \{x^*\}, \text{ where } F_f = \{x \in X \mid f(x) = x\};$$

(10)
$$f^n(x_0) \to^{\circ} x^* \text{ for each } x_0 \in X.$$

(11)
$$|f^{n}(x_{0}) - x^{*}| \leq s \left(|f^{n+1}(x_{0}) - f^{n}(x_{0})|\right), \ n \in \mathbb{N},$$

where s(t) denotes the sum of the series

$$\sum_{k=0}^{\infty} \varphi^k(t)$$

Proof. Let $\{x_n\}$, $x_n = f(x_{n-1})$, $n \in \mathbb{N}$, $x \in X$, be the sequence of successive approximations.

From (8) and (2) we obtain

$$|x_{n+p} - x_n| \le |x_{n+p} - x_{n+p-1}| + \dots + |x_{n+1} - x_n| \le$$

$$\le \sum_{k=0}^{p-1} \varphi^k(|x_{n+1} - x_n|) \le \sum_{k=n}^{n+p-1} \varphi^k(|x_0 - x_1|), \ n, p \in N.$$

Since φ is a (c)-comparison operator, it results that $\{x_n\}$ is (0)-Cauchy sequence. But X is σ -complete, hence $\{x_n\}$ is (0)-convergent.

Let $x^* = (0) - \lim_n x_n$. From the continuity property of each φ -contraction we deduce

$$x^* = f(x^*),$$

that is $x^* \in F_f$.

The unicity of fixed point follows in a standard way. Assume $x^*,y^*\in F_f,\ x^*\neq y^*.$ Then

 $0<\mid x^*-y^*\mid=\mid f^n(x^*)-f^n(y^*)\mid\leq \varphi^n(\mid x^*-y^*\mid), \text{ and letting } n\to\infty,$ we obtain

$$0 < |x^* - y^*| \le 0,$$

contradiction. Hence $F_f = \{x^*\}.$

To obtain (11), we take $p \to \infty$ in the inequality

$$|x_n - x_{n+p}| \le \sum_{k=0}^{p-1} \varphi^k(|x_n - x_{n+1}|)$$

The proof is now complete. \Box

Corollary 1. Let X be a σ -complete vector lattice and $f: X \to X$ a mapping such that, for certain $n \in N^*$, f^n is a φ -contraction, with $\varphi(c)$ -comparison operator.

Then f has a unique fixed point.

Proof. We apply Theorem 2. \square Remark 4.

- a) For $\varphi(t) = \alpha t$, $\alpha \in [0, 1)$, $t \in K$, from Theorem 2 we obtain Theorem 2.1 from [13].
- b) For other results based on the comparison method and various applications, see [8], [9].

References

- [1] Amman, H., Order structures and fixed points, Math. Inst. Ruhr, 1977.
- [2] Berinde, V., Error estimates in the approximation of the fixed points for a class of φ -contractions, Studia Univ. "Babes-Bolyai", 35 (1990), fasc. 2, 86-89.
- [3] Berinde, V., The stability of fixed points for a class of φ -contractions, Univ. Cluj-Napoca, Preprint nr. 3 (1990), 13-20.
- [4] Berinde, V., Une generalization du critère de D'Alembert, Bul. St. Univ. Baia Mare, vol. VII (1991), 21-26.
- [5] Berinde, V., A convolution type proof of the generalized ratio test, Bul. St. Univ. Baia Mare, vol. VIII (1992), 35-40.
- [6] Cristescu, R., Order vector spaces and linear operators, Ed. AcademieiAbacus Press, Kent, 1976.
- [7] Cristescu, R., Order structures in vector lattices, Ed. St. Enciclopedică, Bucuresti, 1983 (in Romanian).
- [8] Heikkila, S., On fixed points through iteratively generated chains with applications to differential equations, J. Math. Anal. Appl. Vol. 138, 2 (1987),397-417.

38

- [9] Heikkila, S., On operator and integral equations with discontinuous right-hand side, J. Math. Anal. Appl. Vol. 140, 1 (1987), 200-217.
- [10] Rus, A. I., Principii si aplicatii ale teoriei punctului fix, Ed. DACIA, Clui Napoca, 1979.
- [11] Rus, A. I., Metrical fixed point theorems, Univ. of Cluj Napoca, 1979.
- [12] Rus, A. I., Generalized contractions, Univ. of Cluj Napoca, Preprint nr. 3 (1983), 1-130.
- [13] Voicu, F., Applications contractions dans les espaces ordonnés, Univ. of Cluj Napoca, Preprint nr. 3 (1988), 181-214.

Received by the editors October 13, 1994.