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Abstract

In [5], the concept of compatible mappings was introduced as a
generalization of commuting mappings. The utility of compatibility in
the context of fixed point theory was demonstrated in in many papers.
In this paper, we extend the result of M. Imdad and A. Ahmad [4] in
metric spaces, Y. J. Cho, K. S. Park, T. Mumtaz, M. S. Khan [1] in
2-metric spaces and M. Stojakovié [8] in Menger spaces.
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1. Introduction

Definition 1. Let f and g be a mappings from a metric space (X, d) into
itself. Then {f,g} are said to be compatible f

lim d(fgzn,gfzn) =0
n—roo
whenever {z,} is a sequence in X such that lim fz, = lim gz, = z for
n—+00 =00

some z in X.
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Mappings which commute are clearly compatible, but converse is false. S.
Sessa [7] generalized commuting mappings by calling mappings f and g from
a metric space (X, d) into itself a weakly commuting pair if d(fgz,gfz) <
d(gz, fz) for all z € X. Any weakly commuting pair are obviously compat-
ible, but the converse is false. See [5] for examples of the compatible pairs
which are not weakly commutative and hence not commuting pairs.

The following Lemma will be usefull later.
Lemma. Let f and g be compatible mappings from metric space (X,d) into

itself. If f is continuous and lim fx, = lim gz, = 2z then lim ¢gfz, =
f n—00 n—00 n—oo
z.

2. Result in metric space

Theorem 1. Let {S,I} and {T,J} be compatible pairs of mappings of com-
plete metric space (X, d) into itself such that :

a) T(X)CI(X),  S(X)CJ(X);
b) For all z,y in X either

d(Iz, Sz)d(Iz,Ty) + d(Jy, Ty)d(Jy, Sz)
d(Iz,Ty) + d(Jy, Sz)

if d(Iz,Ty) + d(Jy, Sz) £ 0, where o, 3 >0, a+ <1, or

(1) d(Sz,Ty) € « + Bd(Iz,Jy)

(1) d(Sz,Ty)=0 if  d(Iz,Ty)+ d(Jy,Sz)=0

If one of S,T,I or J is continuous, then S,T,I and J have unique fized
point z. Further, z is the unique common fized point of § and I and T and
J.

Proof. Let zo be an arbitrary point of X. Since S(X) C J(X) we can find
a point z; in X such that Szo = Jzy. Also, since T(X) C I(X) we can
choose a point zg with Tz, = Iz,. In general for the point z3, we can pick
up a point 9,41 such that Sz, = Jzo,+1 and then a point 75,42 with
Txony1 = [2on42 forn=0,1,2,....

Let us put uz, = d(ST2y, TZon+1) and tzn+1 = d(TT2n+1, ST2nt2)-
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Now, we distingnish two cases:
(i) Suppose ug, # 0,u2,41 # 0 forn =10,1,2,....

Then, on using inequality (1), we have

(2) ang1 < (a+ Bug, < ... < (a4 8)" ! ug, for n=0,1,2,....

It follows that the sequence
{5.730, T.??l, 5.732, e ,Tﬂ?gn_l, ngn,T$2n+1, .. }

is Cauchy sequence in the complete metric space (X, d) and so gets a limit
z in X. Hence the sequences {Sz3,} = {Jzony1} and {Tzo,—1} = {[z2,}
as it’s subsequences also converge to the same point z.

Let us now suppose that I is continuous so that the sequences {I*z3,}
and {I/Sz,,} converge to the same point Iz. Since S and I are compatible
by continuity of [ and Lemma we have the sequence {S1z,,} also converges
to the point /z.

As in [4] one can see that

, d(I?z9,, STxe)d(IPTon, TTon41
d(S1z3n, T2ont1) < @ (d(Igz?n,,Tz2n-|—1))+(d(¢]$2n+l,5}-33)2n)
d(Jzons1, Te2u41)d(J22n41, ST2on) )
d(1?z9y, Txony1) + d(J22n41, ST22y)
+ﬂd([2m2n, JTont1)

_+_

which on letting n — oo reduced to
d(1z,z) < pd(1z,2z),

giving Iz = z.
Similarly d(Sz,z) = 0 and hence Sz = 2.

Since Sz = z and 5(X) C J(X) there always exists a point 2 such that
Jz* = z. Thus

d(I1z,Tz)d(Iz,Tz*) + d(Jz*, Tz*)d(Jz*, 5z)
d(Iz,Tz*)+ d(Jz*,5z)
+8d(1z,J=")

d(z,Tz*)=d(52,Tz") <
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giving thereby Tz* = z.
Using compatibility, Tz* = Jz* implies d(JTz*,TJ2z*) = 0 and hence
Tz=TJz" = JTz* = Jz. At the end we have that
ad(IZ’ Sz)d(Iz,Tz) + d(Jz,Tz)d(Jz,S5z) N
d(12,Tz)+ d(Jz,S5z)
+3d(1z,Jz)
Bd(z,Tz)

d(z,Tz)=d(S5z,Tz) <

H

which implies that z = Tz = Jz.
Thus, we have proved that z is a common fixed point of §,7,1 and J.

Now suppose that S is continuous, so that the sequences {S2z3,} and
{S§Izs,} converge to the point Sz. Since S and I are compatible, it follows
similarly that sequence {ISzs,} also converge to Sz and that Sz = z.

As §(X) C J(X) and Sz = z, we can find a point z* in X such that
Jz* = z, and show that T2* = z. Since T and J are compatibility it again
follows as above that Tz = Jz. Further

d(Iz o, Stan)d([22,,T2)
d(Izg,,Tz)+ d(Jz, Sza,)
d(Jz,T2)d(Jz, Sxap)
d(Izgn, Tz)+ d(J z, Sa:2n))
+ﬁd(1$2n, JZ)

d(Sz2,,Tz) < a(

which on making v — oo gives z = T'z.

Thus, the point z is in the range of T and since T(X) C I(X) there
always exists a point Z in X such that IZ =z

Thus, on (1),

) . d(1%,57)d(1%,Tz
d(5%,2) = d(55T2) < a (d(I(Z:,Tz) l d(Jz, 5)5)
d(Jz,Tz)d(Jz,5%)

d(1%,Tz) + d(J z, sz))
+Bd(I7,J2) =0

so 82 = z.
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Again, since S and [ are compatible, 5% = [Z we have that d(S1Z,IS5%) =

0 so
Sz=812=152=1z

Thus, we have proved again that z is a common fixed point of §,T,1
and J.

If the mapping 7" or J is continuous instead of S or I, then the proof
that z is a common fixed point of 5,7, I and J is similar.

One can show that z is unique common fixed point for S and [ and T
and J.

(ii) If g, = 0, for some n, then inequality (2) gives uz,4; = 0 which
implies that

Sz, = JxZn-l—l = Tx?.'n,-l—l = I$2n+2 = Sx?.n-l—?. =er =2

As in [4] one can argue that z is a unique fixed point of 5,7, [ and J.

Remark. By choosing o, 8,1,J,.5 and T suitably, we can derive a multitude
of fixed point theorems which generalized well known results for weakly
commuting mappings.

3. Results in 2-metric spaces

At first let us recall the notion of 2-metric spaces.

Definition 2. 4 2-metric space i3 a nonempty set X with a real-valued
function d on X x X x X satisfying the following conditions:

1) For two distinct points T,y in X there is a point z in X such that

d(z,y,2) #
2) d(z,y,z) = 0 if at least two of z,y, z are equal;
3) d(z,y,2) = d(z,2,y) = d(y,z,z) for all z,y,z in X;
4) d(z,y,2) < d(z,y,u)+ d(z,u,z) + d(u,y, 2) for all z,y,z,u in X.

Function d is called a 2-metric for the space X and (X,d) is called a 2—
metric space.
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Remark. It has been shown that although d is a continuous function of
any one of its three arguments it need not be continuous in two arguments
but if it is continuous in two arguments then it is continuous in all three
arguments.

Number of mathematicians have studied the aspects of fixed point the-
ory in the setting of 2—metric spaces. They have been motivatied by various
concepts known for the metric spaces and have thus introduced analogues of
various concepts in the frame work of 2-metric spaces. Let us recall defini-
tion of asymptotically regular sequence and define the notion of compatible
mappings in 2-metric spaces.

Definition 3. Let (X,d) be a 2-metric space, and S and T be mappings
from X into itself. Then a sequence {z,} in X is said to be asymplotically
{S, T }—regular if

lim d(Tz,,Sz,,a) =0

Nn—00

for all a in X.
In 2-metric space the notion of compatibility has the following form.

Definition 4. Lel f and g be mappings from 2-metric space X into itself.
Then {f,g} are said to be compatible if for every a € X

lim d(fgzn,9fzn,a)=0

whenever {z,} is a sequence in X such that lim fz, = lim gz, = z for
n—oo nN—r00

some z 1 X.

Theorem 2. Let (X,d) be a complete 2-metric space, d continuous and
A, S and T be mappings from X into itself such that

(1) S and T are sequentialy conlinuous;
(2) {A,S} and {A,T} are compatible pairs;
(3) There exists an asymptotically {A, S} and {A,T}—regular sequence;

(4) d(Az,Ay,a) < a1d(Sz, Az, a) + azd(Tx, Az, a) + azd(Sy, Ay, a)
+a4d(Ty, Ay,a) + asd(Sz, Ay, a) + asd(Tz, Ay, a)
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+a7d(Sy, Az,a) + agd(Ty, Az, a) + agd(Sz, Ty, a)
+a10d(Sy, Tz, a)

for all z,y,a in X, where a;, ¢+ = 1,2,...,10, are non-negative real
numbers such that

max{as + a + -+ - + a10, az + a3z + as + ag + ag + a1,

as + a4 + as + ag, a1+a2+a7+a8}<1.

Then A, S and T have a unique common fized point in X.

Proof. Let {z,,} be an asymptotically {A, S} and {A, T}—regular sequence.
Then by (4)

d(Az,, Az, a) < a1d(Szy, Az, a) + a2d(TTy, ATy, a)+

+a3d(STp, ATin,a) + a4d(T Ty, ATy, a) + asd(Szy,, ATy, a)+
tagd(Tzy, AT, a) + a7d(STp, ATy, a) + agd(T 2, A2y, a)+
+agd(Stn, TTpm,a)+ a10d(Sz, T2y, a)

for all @ in X and hence, by condition 4) of 2-metric
(1— a5 —ag — a7 — ag — ag — a10)d(Azp, ATy, a) <

< (a1 + a5 + ag)d(Szy, Azp,a) + (a3 + ag + a10)d(Tzy, Azy,a)+
+(as + a7 + a10)d(STm, ATm, a) + (ag + ag + ag)d(Txp, ATy, a)+
+(ag + ag)d(T2m, ATy, AZn) + (a6 + a10)d( AL, Az, Ty )+
+asd(STpn, ATy, ATy) + a7d(STm, Ay, ATyp) + agd(Szp, Ty, Az, )+
+a10d( ST, TTry ATrn)

for all @ in X.
Since {z,} is an asymptotically {A, S} and {A,T}—regular sequence, as
m,n — 0o, we have

(1 - a5 —ag — ar — ag — ag — a19)d(Azn, ATp,a) = 0

for all @ in X.



46 Lj. Gaji¢, M. Stojakovié

Therefore, { Az, } is a Cauchy sequence in X. Since (X,d) is complete 2
metric space, {Az, } has the limit z in X. It means that lim d(Az,,z,a) =0

. n—00
for all @ in X.
Since

d(Szp,z,a) < d(Swp,z,Az,) + d(Sz,, Azp,a) +

+d(Azyp,2z,a) — 0, n — 00,

Sz, — z as n — oco. Similarly, we have Tz, — z, n — oc. Maps S and T
are sequentially continuous, so it follows that

SAz, — Sz, §%z, — Sz, STz, — Sz, TAz, — Tz, Tz, — Tz,
TS5z, — Tz, as n — oo.

Since

d(ATz,,Tz,a) < d(ATz,,Tz,TAz,)+ d(ATz,,TAz,,a)
+d(TAz,,Tz,a)

and {A,T} are compatible one can see that

lim ATz, =Tz

n—00

(of course you can use Lemma, too).
Similarly, we have also ASz, — Sz as n — oo.
One can prove, just as in [1], that Sz =Tz = Az.
Let us prove that Az = A2z, At first notice that
lim d(A(Sz,),S(S,),a) =0 and

n-—>00

lim d(A(Sz,),T(Sz,),a)=0  foreach a€X.

so {Sz,} is asymptotically {A, S} and {A,T}-regular. Now, if we repeat
the above procedure for sequence {S5z,}, using that n]-l—rr%o A(Sz,) = Az, we
have that

A(Az) = S(Az) = T(Az).



On compatible mappings in fixed point theory 47

Now by 4), for all ¢ in X,

d(Az, A*z,a) < a1d(Sz,Az,a)+ ayd(Tz, Az,a) + azd(S Az, A%z,a) +
+a4d(T Az, A*z,a) + asd(Sz, A*z,a) +
taed(Tz, A*2,a) + ard(S Az, Az,a) + agd(T Az, Az, a)
tagd(S2z,TAz,a)+ a1o(SAz,Tz,a)
= (a5 +ag + ar + ag + as + a10)d(Az, Az, a)

Since as + as + a7 + ag + ag + ayo < 1, d(Az, A%z,a) = 0 that is Az = A%z.
Putting p = Az we have that

p=Ap=Sp="Tp.

Thus, p is a common fixed point of A, 5 and T. For uniqueness see [1].

Remark. A is sequentially continuous at common fixed point of 4,.5 and
T in this case too.

4. Result in Menger space

A Menger space is a space in which the concept of distance is considered to be
probabilistic, rather then deterministic. For a detailed discussion of Menger
spaces and their applications we refer to Schweizer and Sklar {6]. The theory
of Menger spaces is of fundamental importance in probabilistic functional
analysis. Recently, some fixed point theorems for mappings in Menger spaces
have been proved by several authors: G. Bocsan, A. F. Bharucha-Raid, S.
S. Chang, Gh. Constantin, O. Hadzi¢ and others (see [3]).

Let R denote the reals and R* = {z € R : z > 0}. A mapping
F : R — R7T is called a distribution function if it is non-decreasing, left
continuous with inf /7 = 0 and sup F' = 1. We will denote by A the set of
all distribution functions. A commutative, associative and non-decreasing
mapping ¢ : [0,1] x [0,1] — [0,1] is a T—norm if and only if t(a,1) = a for
all a € [0,1)] and ¢(0,0) = 0.

Definition 5. A Menger space is o triple (X, F,t) where X is a set, F
is a mapping from X x X into 2\ and t is a T—norm. We shall denote
the distribution function F(x,y) by I, and F; ,(¢) will represent the value
of Fy, at ¢ € R. The function F,,, z,y € X, are assumed to satisfy the
following conditions:
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1. Fyy(e) =1 for ¢ >0 if and only if z =y.
2. Fp4(0)=0, forall z,y€ X.
3. Fry=F,,, forall z,y€ X.

4. Fry(e + 8) 2 t(Fy.(€), Foy(6)), forall z,y,z € X.

Throughout this paper H will denote the specific distribution function de-
fined by

0 <0

1 ¢>0.

A =

The concept of neighbourhoods in Menger space was introduced by Schweizer
and Sklar [6]. If z € X, ¢ > 0 and A € (0,1), then an (&, A)—neighbourhood
of z, called U,(g, A), is defined by

Us(e, ) ={y € X : Foy(e) > 1= A}

If t is continuous, then (X, F,t) is a Hausdorff space in the topology induced
by the family {U,(e,A):z € X,e > 0,) € (0,1)} of neighbourhoods.

Definition 6. A set M C X is called probabilistically bounded if and only
if

inf F,,(¢)=1.
b T weM zle)

Definition 7. The pair {f,g}, where f : X — X and g : X — X, is
compatible if for every sequence {z,} C X such that nlgr;o fzn = nh_}rgo gz, =
z € X the relation

n]LH;O Ftgzngten(€) = H(e)

holds for all ¢ € R.

Theorem 3. Let (X, F,t) be a complete Menger space with a continuous
T-normtandleth: X - X, k: X = X, f: X - AX)andg: X —
k(X) be continuous mappings such that {f,k} and {g,h} are compatible
pairs. Further, suppose that for all z,y € X and for all € > 0 the following
inequality holds

(%) Fr,gy(€) 2 Frany($(€)),
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where ¢ : RT — R™ s an increasing function such that lim ¢™(t) = oo for
n—>00

all t > 0. If the sequence {y, }nen formed by
Yon—1 = gTan—1 = kTan,

Yon = f152n = h$2n+1, néeN

is probabilistically bounded for some z, € X, then there ezists a unique
common fized point for the mappings f,g,h and k.

Proof. Let {y,} be the sequence as was noted above. First, we shall show
that {y,}nen is a Cauchy sequence.

In order to prove that, we shall show that

lim F, .. ()= H(e), for every c€R.

p—oo
If m =2iand p=25 —1 (let 7 > i) then we have

Fy2iyy2]—l (5) = Ffafzi,gtvzj—l (5) > FkI?i)hIZJ—l (¢)(5))
= fo2j—2a31'2é~1 (¢)(5)) > Fkl'Zj—thl?i—l (¢2(5))
= Ffafzi—z,grzj 3(¢2(8)) 2 Ffﬂ«'o,gl‘zj—l—zi(d)m(g))
> f F, (1) = Do (¢%(e)).
S AU (1) = Digayzz, (67(2))

Since {yn }nen is probabilistically bounded, letting i — o0 and 7 — oo, we

get |
lim Dy, 0 (6%(€)) = H(e).

Repeating this procedure we can prove a similar result for m = 2¢ — 1 and
p =27

If m and p are both even or both odd, we proceed as follows.

Fyz.,yz,(e)>t(Fy2.,y2.+1( ); y2.+1,y21( ) — t(H(e), H(f))—H(e)

Fyyio —1.Y25— _i(e) 2 t(Fy,_ 1,y2;( ) Fy Y2iiY2i— 1( )) — t(H(e), H(e)) — H(e)

if i — 0o and j — o0, for all € > 0.
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Thus, we have proved that {y,}.en is a Cauchy sequence in X which
means that there exists y* € X such that lim y, = y*.
—00

To establish that fy* = gy* = hy* = ky*, we proceed as follows.

fyv* = f lim kzy, = lim fkxe, = lim kfzy, =

= k lim fzy, = ky”

9y = g lim hagpyy = lim ghzony = Jlim hgzani
= b lim gzoniy = hy.
Since
Fpyn gy (€) 2 Fiyr by ((€)) = Firyr g2 ($(e)) > - ..
e > Fryr oo (97(€)) — H(e) for all > 0.
we have proved that fy* = gy* = ky* = hy*.

The point fy* is a fixed point for the mappings f, g, h, k. We shall show
this for the mapping f; the proof for the mappings g, h, k is analogous.

From compatibility of {f,k} we obtain that
kfy”=kf lim gp = lim kfy, = lim fky, = fk lim y, = fky" = ffy".
Further,

Fjpys 12 (€) = Frpyx gy (€) 2 Frpye pyr (9(€)) = Frpyn 12 ($(€)) > - ..
D Fffy.’fy.(d)"(g))—) H(S) for n — oo,

for all ¢ > 0, which means that fy* is a common fixed point for the mappings
f,g,h and k.

If we suppose that there exists another common fixed point 2z € X, we
get
Fry»2(€) = Frpyr g2(€) 2 Fepyena(9(€)) =

Fffy‘,gz(¢(5)) > .2 ny‘,z(¢n(5)) - H(‘S)

for » — oo for all ¢ > 0, which means that fy* is a unique common fixed
point for the mappings f,g,h and k.

This completes the proof of Theorem 3.
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