Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 24, 2 (1994), 63-68 Review of Research Faculty of Science Mathematics Series

A LOCALLY CONVEX VERSION OF ADJOINT THEOREM

Endre Pap

Institute of Mathematics, University od Novi Sad Trg Dositeja Obradovića 4, 21000 Novi Sad, Yugoslavia

Charles Swartz

Department of Mathematical Sciences New Mexico State University Las Cruces, NM 88003, U.S.A

Abstract

In this paper the adjoint theorem (the boundedness of the adjoint operator for a linear operator) for locally convex topological vector spaces is generalized. The obtained results on the closed graph theorem are applied.

AMS Mathematics Subject Classification (1991): 46A32 Key words and phrases: adjoint operator, $\tau - K$ -sequence, $\tau - K$ -boundedness

In [7], E. Pap established a very interesting theorem concerning the boundedness of the adjoint operator for a linear (not necessarily continuous) operator on inner product spaces. The result was extended to normed spaces in [2], [8], and [9] and was employed in [9] to give a proof of the closed graph theorem for normed spaces which does not rely on the Bair Category Theorem. In this note we establish a general form of Pap's adjoint theorem for locally convex spaces. We then use this result to establish a closed graph theorem for closed linear operators between locally convex spaces.

Throughout this note let X and Y be Hausdorff locally convex topological vector spaces and $T: X \to Y$ a linear mapping. The domain of the adjoint operator, T', is defined to be $D(T') = \{y' \in Y' : y'T \in X'\}$ and $T': D(T') \to X'$ is defined by T'y' = y'T. Pap's adjoint theorem asserts that the adjoint operator is always a bounded linear operator when X and Y are normed spaces and X is a K-space ([2] 3.11, [8], [9]). We show below in Theorem 3 that T' is always a bounded linear operator with respect to the relative weak * topology on D(T') and a particular locally convex topology on X'.

If (E, τ) is a topological vector space, a sequence $\{x_k\}$ in E is said to be a $\tau - K$ -sequence if every subsequence of $\{x_k\}$ has a further subsequence $\{x_{n_k}\}$ such that the subseries $\sum x_{n_k}$ is τ -convergent to an element of E ([2] Ch. 3). A subset A of E is said to be $\tau - K$ -bounded if for every sequence $\{x_k\} \subset A$ and every scalar sequence $\{t_k\}$ which converges to 0, the sequence $\{t_nx_n\}$ is a $\tau - K$ -sequence ([1], [2] Ch. 3). A K-sequence obviously converges to 0 and a K-bounded set is bounded but the reverse implications do not hold in general although they do hold in a complete metric linear space ([2] Ch. 3). The notions of K-convergence and K-boundedness have proven to be very useful as substitute for completeness in many of the classical results of functional analysis (see [2], [11]).

We begin by establishing a useful property of sets which are K-bounded in the weak topology. The weak topology of X (weak * topology of X') will be denoted by $\sigma(X, X') = (\sigma(X', X))$.

Proposition 1. If $A \subset X'$ is $\sigma(X', X)$ bounded and $B \subset X$ is $\sigma(X, X') - K$ -bounded, then

$$\sup\{|< x', x>| \colon x' \in A, x \in B\} < \infty,$$

i.e., A is uniformly bounded on B.

Proof. It suffices to show that $t_k < x_k', x_k > \to 0$ for every $\{x_k\} \subset B$, $\{x_k'\} \subset A$ and a positive sequence of scalars $t_k \to 0$. To show this we use the Basic Matrix Theorem of [2], 2.1 or [6], 2.1. For this consider the matrix $M = [<\sqrt{t_i}x_i', \sqrt{t_j}x_j>]$. The columns of M converge to 0 since A is weak * bounded. If $\{m_j\}$ is any subsequence, then there is a further subsequence $\{n_j\}$ such that the subseries $\sum_{j=1}^{\infty} \sqrt{t_{n_j}}x_{n_j}$ is $\sigma(X, X')$ convergent to some

 $x \in X$. Then

$$\sum_{j=1}^{\infty} \langle \sqrt{t_i} x_i', \sqrt{t_{n_j}} x_i \rangle = \langle \sqrt{t_i} x_i, x \rangle \to 0.$$

Hence, M is a K-matrix and its diagonal converges to 0 as desired ([2], 2.1).

We have the following elementary property of the transpose operator.

Proposition 2. T' carries $\sigma(Y',Y)$ bounded subsets of D(T') to $\sigma(X',X)$ bounded subsets of X'.

Proof. If $A \subset D(T')$ is weak * bounded and $x \in X$, then < T'A, x > = < A, Tx >is bounded.

If we let K(X',X) be the locally convex topology on X' of uniform convergence on the $\sigma(X,X')-K$ -bounded subsets of X ([10]), then we obtain the following result from Proposition 1 and 2.

Theorem 1. T' carries $\sigma(Y',Y)$ bounded subsets of D(T') to K(X',X) bounded sets.

Since the topology K(X',X) is stronger than the Mackey topology $\tau(X',X)$ ([10]), it follows, in particular, from Theorem 1 that the transpose map T' carries weak * bounded subsets of D(T') to $\tau(X',X)$ bounded sets.

A topological vector space (E, τ) is said to be K-space if every sequence which converges to 0 is a $\tau - K$ -sequence ([2] Ch.3). For K-spaces we obtain from Theorem 1 the following extension of Pap's Adjoint Theorem.

Theorem 2. If X is a K-space for some topology τ which is compatible with the duality between X and X', i.e., $\sigma(X, X') \subset \tau \subset \tau(X, X')$, then T' carries $\sigma(Y', Y)$ bounded subset of D(T') to strongly bounded subsets of X'.

Proof. If a subset of X is $\sigma(X,X')$ bounded, it is τ -bounded and, hence, $\tau-K$ bounded since (X,τ) is a K-space, and therefore, $\sigma(X,X')-K$ bounded. By Theorem 1 map T' carries $\sigma(Y',Y)$ bounded subsets of D(T') onto sets which are uniformly bounded on $\sigma(X,X')-K$ bounded sets and, therefore, uniformly bounded on $\sigma(X,X')$ bounded sets.

If X is a normed space, then the strong topology of X' is just the dual norm topology so if X is a normed K-space, T' carries weak * bounded

subsets of D(T') to norm bounded subsets of X', and if Y is a normed space too, then T' carries norm bounded subsets of D(T') to norm bounded subsets of X'. This is just the norm version of Pap's adjoint theorem ([2], 3.11, [8] Theorem 2, [9]).

As an application of Theorem 1 we obtain form of the closed graph theorem for locally convex spaces. To accomplish this give sufficient conditions which insure that D(T') = Y', and then we use Theorem 1 to obtain the continuity of the operator T. First we derive continuity properties for T assuming that D(T') = Y'.

Let $\beta(Y, Y')$ be the strong topology on Y, i.e., topology on Y of uniform convergence on $\sigma(Y', Y)$ bounded sets.

Let $\beta^*(Y,Y')$ be the topology on Y of uniform convergence on $\beta(Y',Y)$ bounded subsets of Y' ([3] p.220). We have $\beta^*(Y,Y') \subset \beta(Y,Y')$ and the equality holds iff Y is infrabarrelled ([3] p.220).

Theorem 3. Let (X, τ) be a K-space for some compatible topology τ , i.e., $\sigma(X, X') \subset \tau \subset \beta(X, X')$. Assume that D(T') = Y'. Then T is continuous with respect to $\beta^*(X, X')$ and $\beta(Y, Y')$.

Proof. Let $B \subset Y'$ be $\sigma(Y',Y)$ bounded. By Theorem 2, T'B is $\beta(X',X)$ bounded in X'. Therefore, $(T'B)^{\circ}$, the polar of T'B in X, is a basic $\beta^*(X,X')$ neighborhood of 0 in X. Since $(T'B)^{\circ} = T^{-1}(B^{\circ})$ this shows that T is $\beta^*(X,X') - \beta(Y,Y')$ continuous.

If X in Theorem 3 is also infrabarrelled, then T is continuous with respect to the original topology of X and the strong topology of Y.

Next, we consider conditions which will insure that D(T') = Y'. First recall that if T is closed, then D(T') is $\sigma(Y',Y)$ dense in Y' ([5] 34.5.3). Thus, to show that D(T') = Y' for a closed operator T is suffices to give conditions which insure that D(T') is $\sigma(Y',Y)$ closed.

A locally convex space Y is an infra-Pták space if every $\sigma(Y',Y)$ dense subspace $D \subset Y'$ which is such that $D \cap U^{\circ}$, where U° is polar of U in Y', is $\sigma(Y',Y)$ closed for every neighborhood U of 0 in Y ([4] 34.2).

Theorem 4. Let X be infrabarrelled and Y be an infra-Pták space. If T is closed and T' carries equicontinuous subsets of D(T') to strongly bounded subsets of X', then D(T') = Y'.

Proof. Let U be a neighborhood of 0 in Y. By the assumption that Y is an infra-Pták space, it suffices to show that $D(T') \cap U^{\circ}$ is $\sigma(Y',Y)$ closed. Let $\{y'_{\delta}\}$ be a net in $D(T') \cap U^{\circ}$ which is $\sigma(Y',Y)$ convergent to some $y' \in U^{\circ}$. We must show that y'T is continuous. For each $x \in X$, we have $\langle T'y'_{\delta}, x \rangle = \langle y'_{\delta}, Tx \rangle \rightarrow \langle y', Tx \rangle$, and since $\{T'y'_{\delta}\} \subset T'(D(T') \cap U^{\circ})$, the net $\{y'_{\delta}T\}$ is contained in a strongly bounded subset of Y' by hypothesis. Therefore, by the version of the Banach-Steinhaus Theorem for infrabarrelled spaces ([4] 39.5 Remark 2), y'T is continuous.

Note that the condition on T' assumed in Theorem 4 is satisfied if the hypothesis of Theorem 2 is satisfied.

We can now combine the results above to obtain a version of the Closed Graph Theorem (CGT).

Theorem 5. Let X be infrabarrelled and such that (X, τ) is a K-space for some compatible topology τ . Let Y be an infra-Pták space. If T is closed, then T is continuous with respect to the original topology of X $(= \beta^*(X, X'))$ and $\beta(Y, Y')$.

Proof. The result follows immediately from Theorems 2, 3, 4.

Remark. Note that it follows from Theorem 5 that T is continuous with respect to the original topologies of X and Y; this is the conclusion in the 'usual' form of CGT ([5] 34.6 (9)). The standard locally convex version of the CGT assumes that the domain space is barrelled so the operator T is continuous with respect to the topology $\beta(X,X')$ on the domain space. The topology $\beta^*(X,X')$ is weaker than $\beta(X,X')$ so Theorem 5 yields a stronger continuity result that the usual CGT; of course, this is obtained at the expense of more complicated assumptions on the domain space. Also, the standard locally convex version of the CGT only assures that the operator T is continuous with respect to the original topology of Y; it requires an additional argument to obtain the continuity with respect to $\beta(Y,Y')$ where as the proof of Theorem 3 gives the continuity with respect to $\beta(Y,Y')$ directly.

References

[1] Antosik, P., On Uniform Boundedness of families of mappings, Proc. of the Conference on Convergence Structures, Szczyrk (1979), 2-16.

- [2] Antosik, P., Swartz, C., Matrix Methods in Analysis, Springer Verlag Lecture Notes in Mathematics 1113, Heidelberg, 1985.
- [3] Horvath, J., Topological Vector Spaces and Distributions, Addison-Wesley, Reading, Massaschusets, 1966.
- [4] Klis, C., An example of noncomplete normed (K)-space, Bull. Acad. Polon. Sci., 26 (1978), 414-420.
- [5] Köthe, G., Topological Vector Spaces II, Springer-Verlag, Berlin Heidelberg - New York, 1979.
- [6] Pap, E., Functional analysis, Institute of Mathematics, Novi Sad, 1982.
- [7] Pap, E., Functional analysis with K-convergence, Proceedings of the Conference on Convergence, Bechyne, Czech. 1984, Akademie-Verlag, Berlin, 1985, 245-250.
- [8] Pap, E., The adjoint operator and K-convergence, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 15, 2 (1985), 51-56.
- [9] Swartz, C., The closed graph theorem without category, Bull. Australian Math. Soc. 36 (1987), 283-288.
- [10] Swartz, C., A generalization of Mackey's Theorem, and the Uniform Boundednes Principle, Bull. Australian Math. Soc., 49 (1989), 123-128.
- [11] Swartz, C., The Evolution of the Uniform Boundedness Principle, Math. Chronicle 20 (1991), 157-159.

Received by the editors December 13, 1991.