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Abstract

In this paper the adjoint theorem (the boundedness of the adjoint
operator for a linear operator) for locally convex topological vector
spaces 1s generalized. The obtained results on the closed graph theorem
are applied.
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In [7], E. Pap established a very interesting theorem concerning the
boundedness of the adjoint operator for a linear (not necessarily continuous)
operator on inner product spaces. The result was extended to normed spaces
in [2], [8], and [9] and was employed in [9] to give a proof of the closed
graph theorem for normed spaces which does not rely on the Bair Category
Theorem. In this note we establish a general form of Pap’s adjoint theorem
for locally convex spaces. We then use this result to establish a closed graph
theorem for closed linear operators between locally convex spaces.
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Throughout this note let X and ¥ be Hausdorff locally convex topolog-
ical vector spaces and 7 : X — Y a linear mapping. The domain of the
adjoint operator, 77, is defined to be D(T") = {y’ € Y’ : /T € X'} and
T' : D(T') — X' is defined by T’y = 4'T. Pap’s adjoint theorem asserts
that the adjoint operator is always a bounded linear operator when X and Y
are normed spaces and X is a K-space ([2] 3.11, [8], [9]). We show below in
Theorem 3 that 7”7 is always a bounded linear operator with respect to the
relative weak * topology on D(7T") and a particular locally convex topology
on X'

If (E, 7)is a topological vector space, a sequence {z} in F is said to be a
T — K-sequence if every subsequence of {x} has a further subsequence {z,, }
such that the subseries ) z,, is T-convergent to an element of E ([2] Ch. 3).
A subset A of E is said to be 7 — K-bounded if for every sequence {zx} C A4
and every scalar sequence {t; } which converges to 0, the sequence {t,z,} is
a 7 — K-sequence ([1], [2] Ch. 3). A K-sequence obviously converges to 0
and a K-bounded set is bounded but the reverse implications do not hold
in general although they do hold in a complete metric linear space ([2] Ch.
3). The notions of K-convergence and K-boundedness have proven to be
very useful as substitute for completeness in many of the classical results of
functional analysis (see [2], [11]).

We begin by establishing a useful property of sets which are K-bounded
in the weak topology. The weak topology of X (weak * topology of X') will
be denoted by ¢(X,X’) (o(X', X)).

Proposition 1. IfA C X' iso(X', X) bounded and B C X iso(X,X')— K
-bounded, then

sup{|< z’,z >|: ' € A,z € B} < 0,

i.e., A is uniformly bounded on B.

Proof. It suffices to show that t; < z/,zx >— Oforevery {zx} C B, {2} C
A and a positive sequence of scalars tx — 0. To show this we use the
Basic Matrix Theorem of [2], 2.1 or [6], 2.1. For this consider the matrix
M = [< Vtizl,\/Tjz; >]. The columns of M converge to 0 since A is weak
* bounded. If {m;} is any subsequence, then there is a further subsequence
{n;} such that the subseries > 72, | /tn, %, is 0(X, X') convergent to some
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z € X. Then
[e.9]
Y < VEEh ;3 >=< VEzi, T > 0.
7=1

Hence, M is a K-matrix and its diagonal converges to 0 as desired (2], 2.1).

We have the following elementary property of the transpose operator.

Proposition 2. 77 carries o(Y',Y) bounded subsets of D(T') to o(X', X)
bounded subsets of X'.

Proof. If A C D(T') is weak * bounded and z € X, then < T'A,z >
=< A,Tz > is bounded.

If we let K(X’,X) be the locally convex topology on X' of uniform
convergence on the o(X,X’) — K-bounded subsets of X ([10]), then we
obtain the following result from Proposition 1 and 2.

Theorem 1. T’ carries o(Y',Y) bounded subsets of D(T’) to K(X', X)
bounded sets.

Since the topology K (X', X)is stronger than the Mackey topology 7(X’, X)
({10}), it follows, in particular, from Theorem 1 that the transpose map 7"
carries weak * bounded subsets of D(T") to 7(X’, X') bounded sets.

A topological vector space (F,7) is said to be K-space if every sequence
which converges to 0 is a 7 — K-sequence ([2] Ch.3 ). For K-spaces we obtain
from Theorem 1 the following extension of Pap’s Adjoint Theorem.

Theorem 2. If X is a K-space for some topology T which is compatible
with the duality between X and X', i.e., o(X,X') C 7 C 7(X, X’), then T’
carries o(Y',Y') bounded subset of D(T’) to strongly bounded subsets of X'.

Proof. If a subset of X is o(X,X’) bounded, it is 7-bounded and, hence,
7 — K bounded since (X,7) is a K-space, and therefore, o(X,X’') - K
bounded. By Theorem 1 map 7" carries o(Y’,Y) bounded subsets of D(T")
onto sets which are uniformly bounded on o(X, X’) — K bounded sets and,
therefore, uniformly bounded on o(X, X’) bounded sets.

If X is a normed space, then the strong topology of X' is just the dual
norm topology so if X is a normed K-space, T’ carries weak * bounded
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subsets of D(T”) to norm bounded subsets of X', and if Y is a normed
space too, then T’ carries norm bounded subsets of D(T”) to norm bounded
subsets of X’'. This is just the norm version of Pap’s adjoint theorem ([2],
3.11, [8] Theorem 2, [9]).

As an application of Theorem 1 we obtain form of the closed graph the-
orem for locally convex spaces. To accomplish this give sufficient conditions
which insure that D(7T') = Y’, and then we use Theorem 1 to obtain the
continuity of the operator T'. First we derive continuity properties for T
assuming that D(T') =Y.

Let 5(Y,Y’) be the strong topology on Y, i.e., topology on Y of uniform
convergence on ¢(Y’,Y) bounded sets.

Let 5*(Y,Y’) be the topology on ¥ of uniform convergence on S(Y',Y)
bounded subsets of Y’ ([3] p.220). We have §*(Y,Y’) C B(Y,Y’) and the
equality holds iff Y is infrabarrelled ([3] p.220).

Theorem 3. Let (X,7) be a K-space for some compatible topology 7,1.¢.,
o(X,X'YC 7 CB(X,X"). Assume that D(T'y=Y'. Then T is continuous
with respect to *(X, X'} and 5(Y,Y’).

Proof. Let B C Y’ be o(Y’,Y) bounded. By Theorem 2, T'B is 3(X’, X)
bounded in X’. Therefore, (T'B)°, the polar of T7'B in X, is a basic
B*(X, X') neighborhood of 0 in X. Since (7'B)° = T1(B°) this shows
that T is *(X, X") — B(Y,Y’) continuous.

If X in Theorem 3 is also infrabarrelled, then T is continuous with respect
to the original topology of X and the strong topology of Y.

Next, we consider conditions which will insure that D(7”) = Y’. First
recall that if 7" is closed, then D(T") is o(Y’,Y) dense in Y’ ([5] 34.5.3).
Thus, to show that D(T’) = Y’ for a closed operator T is suffices to give
conditions which insure that D(T”) is o(Y’,Y) closed.

A locally convex space Y is an infra-Ptak space if every o(Y’,Y’) dense
subspace D C Y’ which is such that D N U°, where U° is polar of U in Y,
is o(Y",Y) closed for every neighborhood U of 0 in Y ([4] 34.2).

Theorem 4. Let X be infrabarrelled and Y be an infra-Ptdk space. If T is
closed and T' carries equicontinuous subsets of D(T') to strongly bounded
subsets of X', then D(T'y =Y.
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Proof. Let U be a neighborhood of 0 in Y. By the assumption that Y is an
infra-Ptak space, it suffices to show that D(T")NU° is o(Y',Y) closed. Let
{y5} be anetin D(T")NU° which is o(Y’,Y") convergent to some ' € U°. We
must show that y'T is continuous. For each z € X, we have < T'y},z >=<
Y5, Te >—< 3y, Tz >, and since {T"y;5} C T'(D(T") N U°), the net {y;T} is
contained in a strongly bounded subset of Y’ by hypothesis. Therefore, by
the version of the Banach-Steinhaus Theorem for infrabarrelled spaces ([4]
39.5 Remark 2), ¢'T is continuous.

Note that the condition on 77 assumed in Theorem 4 is satisfied if the
hypothesis of Theorem 2 is satisfied.

We can now combine the results above to obtain a version of the Closed
Graph Theorem (CGT).

Theorem 5. Let X be infrabarrelled and such that (X, 1) is a K -space for
some compatible topology 7. LetY be an infra-Ptdk space. If T is closed,
then T is continuous with respect to the original topology of X (= g*(X, X'))
and B(Y,Y').

Proof. The result follows immediately from Theorems 2, 3, 4.

Remark. Note that it follows from Theorem 5 that 7T is continuous with
respect to the original topologies of X and Y'; this is the conclusion in the
‘usual’ form of CGT ([5] 34.6 (9)). The standard locally convex version of
the CGT assumes that the domain space is barrelled so the operator T is
continuous with respect to the topology #(X, X’) on the domain space. The
topology #*(X, X’) is weaker than (X, X’) so Theorem 5 yields a stronger
continuity result that the usual CGT; of course, this is obtained at the
expense of more complicated assumptions on the domain space. Also, the
standard locally convex version of the CGT only assures that the operator
T is continuous with respect to the original topology of Y; it requires an
additional argument to obtain the continuity with respect to F(Y,Y”) where
as the proof of Theorem 3 gives the continuity with respect to A(Y,Y”)
directly.
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