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Abstract

Meet-continuous (A-continuous) element of a lattice L is an element

a which satisfies
a/\\/:r:,- = \/(a/\:r:i),
i€l iel

for every chain {z;|i € I} of a lattice; an element with the dual prop-
erty is called join-continuous (V-continuous), and element with both
properties - continuous. We give some properties of these elements,
and prove some statements on lattice identities containing infinitary
operations.

In the second part we apply these lattice theoretic results on the
lattice of weak congruences of an algebra. Namely, the diagonal rela-
tion of this lattice is always a meet-continuous element in the lattice of
weak congruences. We consider some well known algebraic properties,
such as CEP, CIP and infinite CIP (*CIP) and their connection with
the continuity of the diagonal relation. Particularly, we prove some
results on transfering these properties from an algebra to it’s subalge-
bras or factor algebras.
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1. Preliminaries

1.1. Special elements

Here we will give definitions of some special elements of lattices, i.e. elements
which satisfy some identities, and among them definitions of continuous
elements of lattices. Continuity of elements is a link between finite and
analogous infinite properties of them.

An element a of a lattice L is distributive if for every z,y € L,

aV(zAy)=(aVz)A(aVy).

An element a which satisfies the dual law is called codistributive. El-
ement a is codistributive if and only if the mapping m, : L — a | defined
with my(z) = a A z is a lattice homomorphism. This homomorphism in-
duces a congruence on L, and if the congruence class of an z € L has the top
element, we shall denote it with . The dual homomorphism connected with
a distributive element a will be denoted with n,, and the bottom element
of the class to which an element z belongs with b

An element a of a lattice L is infinitely distributive ([4]) if for every
family {z;|¢ € I} C L:

aV(/\x,'): /\(aV z;).

1€l €l
An element a of a lattice L is neutral if for every z,y € L, (aVz)A(aV
yA(zVy)=(arz)ViaAy)V(zAy).

An element a is neutral iff it is distributive, codistributive and can-
cellable (from (zAa=yAaand zVa=yVa)it follows that z = y).

Let L be a complete lattice. An element a € L is said to be meet
-continuous (A-continuous) if '

an Vx,- = \/(a/\xi)
z€el 1€]
for every chain {z;|i € I} C L.([6]).

An element a satisfying the dual property is called join-continuous
(V-continuous).([6]).



On the continuous elements of the lattice 153

An element @ is continuous iff it is both meet -continuous and join
-continuous.([6])

1.2. Weak congruence lattice

Let A = (A, F) be an algebra. A lattice of weak congruences of A
(CwA) is a lattice of all weakly reflexive, symmetric, transitive, and com-
patible relations on A. Weak congruence lattice is thus a lattice of all
congruences on all subalgebras on .A. This lattice is algebraic. Diagonal
relation A is always a codistributive element in Cw.A.

Algebra A has the congruence extension property (CEP) if every
congruence on a subalgebra of A is a restriction of a congruence on A. Recall
that an algebra has the CEP iff A is a costandard element in CwA iff A is
a comodular element in Cw.A iff A is a cancellable element in Cw.A.

An algebra A has the congruence intersection property (CIP) if
(pAO)VA=(pVA)A(BV A)forall p,d € CwA,ie. if Ais a distributive
element in the lattice Cw.A([3]). An algebra A has the infinite congruence
intersection property (*CIP) ([4]) if for an arbitrary family of weak
congruences {p;|i € I},

AV(Ar) = NV,

el €l
2. Lattice theoretic results

Lemma 1. In a complete, cocompactly generated lattice every element s
join -continuous.

Proof. Let L be a complete, cocompactly generated lattice, a € L, and
{z;|i € I} an arbitrary chain in L. Since the inequality a V A;c;2; <
Nicr(aV ;) is always satisfied, it suffices to prove aV A,y i > A;cj(ave;).
If ¢ is a cocompact element, such that ¢ > @V A;c;2;, then ¢ > a and
¢ > Nier®i - From ¢ > A, z; and c cocompact it follows that ¢ > A, ;2
for J C I and J finite. Since {z;[¢ € J} is a chain, A,c;2; = zq , for
zq € {z;]i € J} C {z:]i € I} and it follows that ¢ > a V&4 > A;cf(aV z;).
Since every cocompact element which is greater than a vV A, ;z; is greater
than A;c;(a V z;), too, a V A;c;z; , as an infima of cocompact elements
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and therefore, of all cocompact elements greater than itself, is greater than
Nier(aV z:),ie. Aicgf(ava)<aV Ajpz; . O

Proposition 1. Let L be a complete lattice. Then

a) The set of all meet-continuous elements of a lattice L is closed under
infima.

b) The set of all join-continuous elements of a lattice L is closed under
suprema.

c) The set of all continuous elements of a lattice L is a continuous
sublattice of L.

Proof. a) Let a and b be meet-continuous elements of L and {z;|: € I} an
arbitrary chain in L. Then:

anbA\[zi=an\[(bArz:)=\(anbArzy),
i€l €] i€l
since @ and b are meet-continuous elements, and since from the fact that
{z;|i € I'} is a chain, it follows that {b A z;|i € I'} is a chain as well.

The statement b) is dual to the statement a), and c¢) follows directly
from a) and b).- O

The next example shows that the infimum of join-continuous elements
need not be join-continuous, i.e. that the set of all join-continuous elements
is not closed in general under infima. The similar can be said also for meet-
continuous elements.

Example 1.

In the lattice L (Fig. 1) b and ¢ are join-continuous elements, since

bv Azi=bvd=f=A\bva)

For every finite chain, and every subchain of the chain {z;}, the required
equality is also satisfied. Similarly, ¢ is also join-continuous. However,

av/\zi=avd:h7$g:/\(ani),
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fora=bAc.
1
e f
g
h¢
c b i;
z3
a .
d
0
Fig. 1

Proposition 2. [6] a s a join -continuous and distributive element of a
complete lattice L, if and only if it is an infinitely distributive element. O

Lemma 2. [6] If a is an infinitely codistributive element of the lattice L
and f(Z1,T2, .y Toyy -..) i an arbitrary lattice expression? (possibly with in-
finitary operations), then for all z1,...,24,... € L,

f(z1, 22, ey Ty ) Na = f(zr Aa,za A a,..,zy A ay.l).

The dual proposition is also valid:

Lemma 3. If a is an infinitely distributive element of the lattice I and
f(z1,22, ..., Ty, -..) 18 an arbitrary lattice expression (possibly with infinitary
operations), then for all z,,...,z4,... € L,

f(z1,22, s oy )Va= f(z1Va,z2Va,..,z2q4Va,..).

a

2Defined as a lattice therm including infinitary operations



156 A. Tepavcievié

Proposition 3. [6] If a is a neutral and continuous element of a complete
lattice L, then a lattice identity (possibly with infinitary operations) is sat-
wsfied on L if and only if this identity holds ona | andona 1. O

In the sequel we shall prove some statements concerning identities on
lattices (possibly with infinitary operations) and in the second part shall give
their applications in the weak congruence lattices of algebras. Analogous
theorems to Theorem 1 and 2 were proved in [5] for lattice identities with
finitary operations.

Lemma 4. Let L be a complete lattice with the top element 1, b € L and
f(z1,22, ey Ty o) = g(T1, T2, -y Ty, -..) an arbitrary lattice identity (pos-
sibly with infinitary operations). If for all z3,...,24,... € L,

f(l,ze, 0, Za, ) = g(1, 22, 00, Zay o),
then for all Yo, ...u¥o,--- € b ],

f(ba Y29 ervey Youy ) = g(b> Y253 Yas )

Proof. b is the top element in b | as 1 is the top element in L. For all
Y2y oees Yous - € b |, we have that

f(l) Y23 ciey Yoy ) = g(l) Y2y oeeis Yoy )

Since zAl = z,zV1 = 1,forall z € b |, we prove by induction that the equal-
ity above becomes 1 = 1, or an equality fi(¥2,..--s¥as---) = §1{Y25 -, Yors --- )5
without 1. Since also, zAb =z, and z Vb = b, for all z € b |, when we
replace 1 with b, the equality

f(b’ Y25 ooy Yoy ) = g(b’ Y2y ey Y )

becomes b = b or f1(y2, ...y Yas---) = 91(Y2, -y Yo ... ), and this is true by the
assumption (the same equality as the one which is obtained for 1). O

The dual statement is also satisfied:

Lemma 5. Let L be a complete lattice with the bottom element 0, b € L
and f(21,T2,.ccc;Toy ) = G(T1,T2, ceey oy -..) an arbitrary lattice identity
(possibly with infinitary operations). If for all z,,...,24,... € L,

f(0, 29, .., q,...) = 9(0, 22, ..., Zq, ... ),
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then for all yo, ..., yy,..-€ b7,

F(byy2,y ey Yoy o) = g(b,‘yz, ey Yoy o)

Theorem 1. Let a be a neutral and continuous element of a lattice L, such
that the classes of the congruence induced by the homomorphism m, have
the top elements, and f(z1,Z2,....,Zq,...) = 9(Z1, 22, ...., T, ...) an arbitrary
lattice identity (possibly with infinitary operations), and b € a |.

If fla,22,.....Tq,...) = g(a, T2, ..., Ty, ...) 1S satisfied on a | and on a T,
then f(b,2,...c;Toy--.) = g(b, T, ey Ty, -.) 18 satisfied on b |.

Proof. For z4,...,24,... € b |,
f(b,zo,isay ) Aa= f(bAa,za3ANa,....;z4Na,...) =

=g(bAa,zaNa,....zuNa,...)=g(b,z2,....,Zq,...) A a,
by Lemma 2 and Lemma 4, since bAa =b,and 22 A a,...,2,Aa€b .

Similarly, by Lemma 3,
f(byzo, sy ) Va=g(bzo,...,Zq,..)Va.

Since a is a neutral element of L, it follows that:

f(byz2y sy o) = (b, 22, .y Ty o).

O

The dual statement is also satisfied:

Theorem 2. Let a be a neutral and continuous element of a lattice L, such
that the classes of the congruence induced by the homomorphism n, have the
bottom elements, and f(z1,%2,....,Zqa,...) = §(T1,%2, ..., Ta, ...) an arbitrary
lattice identity (possibly with infinitary operations), and b€ a 1.

If f(a,22,....,;Tq,...) = g(@, 22, ..., Tq, ...) 15 satisfied on a | and on a 7,
then f(b,z2,....;Z4,...) = g(b,z2, ..., Ty, ...) is satisfied on b 1.
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Theorem 3. Let a be a distributive and continuous element of a lattice L,
and b € a . If for all z1,29,....,24,... € a T,

ANOV (21,22, 000y 305.)) = N\(BV (21,22, 00 Tay -22)),

iel jed

then the same identity is satisfied for all z1,2,,...,24,... € L.

Proof. Since a is a distributive and continuous element, it is infinitely dis-
tributive by Proposition 2. Since a V b = b, for 1,24, ...24, ... € L we have
that:

/\(b \ flz'($1,$2, ceeey Ty )) = /\(b VaVv fli(:cl,:cg, vy Ty )) =

i€l i€l
A(bvff(x1Va,x2Va, ey T V@, L)) = /\(b\/fg(:cl\/a,zg\/a, ey V@, L)) =
iel j€d

= NbVaV f(e1,22,.s 205 -) = NV (21,22, 00y Tay -.0))-
JjEJ JjeJ
ad

The dual statement is also satisfied:

Theorem 4. Let a be a codistributive and continuous element of a lattice
L,andbeal. If for all 21,29, ....,%4,..- € a |,

VA Fi(21,32, 00y 305 )) = \[ (B A (21,22, 000y Tay ),

el jeJ
then the same identity is satisfied for all z1, z9,...,2,4 € L. O
Theorem 5. Let a be a neutral and continuous element of a lattice L. If

forbeaf, fi(b,za,...xtq,...) = fa(b,z2, ..., To, ...) is satisfied on a 1, and
fila,z2, .y Ta, ) = fa(@, 22, . Toy --.) 15 satisfied on a |, then

fl(b, T2y eeeey Loy ) = f2(b,$2, cesey ia, )

is satisfied on L.
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Proof. Since a is a neutral and continuous element of a lattice L, it is in-
finitely distributive, and infinitely codistributive, as well. For z,, ..., 1, ... €
L, by Lemmas 2 and 3, we obtain that:

fi(b,zg, ooy oy ) Va = fi(b,zaVa,...,zq Va,..)=
= fa(byz2 Va,....,za Va,..)= fa(b,z2, ..., To, ...) V @,
and, similarly, |
fi(b,zg, oy, ) Aa = fo(by 2o, ey Tyy o) A @
Since «a is neutral,
filb,2g, ey 2y ) = fa(by 2o, sy Ty o)

O

Theorem 6 is dual to Theorem 5:

Theorem 6. Let a be a neutral and continuous element of a lattice L. If
forbeal, fi(b,za, ... 0, ...) = fa(b,22,....,Tq, ...) is satisfied on a |, and
fila,z2, ..., Toy ) = faa, 22, ....sZq, ...) is satisfied on a T, then

f]_(b,d?g, cerns Txs ) = f2(b,172, cesns Tixy )

s satisfied on L. O

3. Application to algebra

Proposition 4. A is a meet -continuous element in the lattice of weak con-
gruences.

Proposition 5. [8] An algebra A has *CIP iff it has CIP and A is a V-
continuous element in CwA. 0O

Proposition 6. [6] If an algebra A has CEP and *CIP then an arbitrary
lattice identity (possibly with infinitary operations) is satisfied on CwA if
and only if this identity holds on SubA and on ConA. O
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Proposition 7. Let A be an algebra which has CEP and *CIP, let

F(@1, 22y ey Ty o) = (@1, T2y eevey Ty -2
be an arbitrary lattice identity (possibly with infinitary operations), and B a
subalgebra of A.

If f(A 22,y Ty ...) = g(A, T2, ...y Ty, ...) 18 satisfied on SubA and on
ConA, then

f(AB, T3y ooy Ty o) = G(AB, T2y eeeey Ty ---)
is satisfied on CwB.

Proof. The proposition is a consequence of Theorem 1. Namely, since A
has CEP and *CIP, A is a neutral and continuous element of Cw.A. In a
weak congruence lattice classes of the congruence induced by mapping m,
always have the top elements (squares of subalgebras). Conditions of the
theorem are thus fulfilled. For every weak congruence p, g is the square of
the underlining set of a subalgebra B on which p is a congruence, and 7 | is
in fact CwB. 0O.

Corollary 1. If algebra A has CEP and *CIP, then every subalgebra B of
A has CEP and *CIP as well.

Proof. CEP and *CIP are identities of the form

f(A 22y s Tay ) = 9(A 22, ey Zay -,

which are satisfied on the whole Cw.A (and thus on ConA and on SubA).
CEP and *CIP on a subalgebra B are the same identities, where A is replaced
with Ag. 0O.

Proposition 8. Let A be an algebra which has CEP and *CIP, let

flz1,22, ey Tay ) = g(21, 22, covey Ty -o0)
be an arbitrary lattice identity (possibly with infinitary operations), and 8 €
ConA. \

If f(A 2o, .oy Ty -..) = g(A, 29, ..., Za, ...) 1S satisfied on SubA and on
ConA, then
f(0,29, gy ) = (0,22, ey Ty -.)
is satisfied on @ 7.
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Proof. Since the algebra has *CIP, classes of the congruence induced by
n, have bottom elements. The rest of the proof is a direct consequence of
Theorem 2. O

Corollary 2. If algebra A has CEP and *CIP, and 8 € ConA is a con-
gruence which satisfies CwA/8 = 8 1, then the factor algebra A/0 has CEP
and *CIP as well.

Proof. If CwA/8 = 67, under the isomorphism f, then f(A) = 4. Instead
of CEP and *CIP in Cw.A/8 we consider identities of the type

f(0, 20, .20, ..) = g(0, 29, ..., 24, ...)
in the lattice 8 T, which are satisfied by Proposition 8. O
Remark. Conditions under which CwA/6 = § T, is satisfied have been
given in [7].
Theorem 7. Let algebra A has *CIP and 0 € ConA. If
/\(6’ V (@1, €2y ey Ty o)) = /\(6‘ v fg((l,‘l,l‘z, ey Ty o)),
€l J€J

is satisfied on ConA, then it is also satisfied in the lattice Cw.A.
Proof. This is a direct consequence of Theorem 3. O

Corollary 3. If an algebra A has *CIP, 8 is an infinitely distributive ele-
ment of ConA and Cw.A/8 is a complete sublattice of Cw.A, then the factor
algebra A/0 has *CIP as well.

Proof. Since 8 corresponds to the diagonal element in Cw.A/f and CwA/8 is
a complete sublattice of Cw.A, and since 6 is infinitely distributive element
in CwA, by Theorem 7, A/6 has *CIP. O

Theorem 8. Let B € SubA for an algebra A. If the identity
V(B A FIU@1, 22, ey Tyy nr)) = V(B A f‘g((L‘l,IL‘z, ey Tgy one) )y

i€l jE€J

is satisfied on SubA then it is also satisfied on the lattice Cw.A.
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Proof. This is a direct consequence of Theorem 4. O

Theorem 9. Let A be an algebra satisfying CEP and *CIP. If for 6 ¢
ConA f1(8,z2,.....;¢4,...) = f2(0,22,....,Zq,...) i8 satisfied on ConA, and
filA 2o, iy Tay o) = f2(DA 22y oy Ty o) 15 satisfied on SubA, then

fi(0, 22,y Ty o) = f2(8, 22, .., 24, -..)

s satisfied on CwA.
Proof. This is a direct consequence of Theorem 5. O

Theorem 10. Let A be an algebra satisfying CEP and *CIP. If for B ¢
SubA, fi(B,z2y.eyToyr) = f2o(B, 22, ey Ta,...) is satisfied on SubA, and
J1(A 22y ey Tay ) = f2(A,Bg, ey Ty -.) 15 satisfied on ConA, then

fl(B,IL‘Q, vaeny Toys ) = fg(B, Loy avany Ly )

1s satisfied on CwA.

Proof. Direct consequence of Theorem 6. 0O
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