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Abstract

In this paper some elementary g-functions are derived as solutions
of some functional equations using several results of Aczel [1]. Applying
pseudo-arithmetical operations to these functions we obtain a wider
class of g-function. Further we will apply the g-derivative [5] to these
g-function and deduce relations between some properties of g-functions
and their g-derivatives.
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1. Introduction

Pseudo-arithmetical operations introduced in {2] and [4] and investigated in
[3] are useful tools in treating nonlinear problems (see [5], [6]). Among the
basic concepts, which are necessary to be built, are the modified functions
- they will be called the g-functions. Some elementary g-functions are de-
rived as solutions of some functional equations using several results of Aczel
[1]. Applying pseudo-arithmetical operations to these functions we obtain a
wider class of g-function. This calculus is a further development of g-calculus
for the real functions introduced in [5] and investigated in [7]. Further we
will apply the g-derivative [5] to these g-function and we deduce relations
between some properties of g-functions and their g-derivatives.
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2. g-calculus for the functions

A consistent system of pseudo-arithmetical operations may be used to the
creation of functions so that we replace common arithmetical operations by
pseudo-arithmetical operations in ruling. We can obtain directly the rational
functions only and that is why we introduce some elementary functions as
the solutions of corresponding functional equations.

We will work with the real function f, which is continuous on (a, b) and
(a,b) C (=00, 4+00). Further, let a function g : (~o0, +00) — (—00,+00)
be a generator of the consistent system of pseudo-arithmetical operations
{#,0,0,0} (see [3]). Then g is a continuous monotone strictly increasing
unbounded odd function, g(0) = 0, ¢g(1) =1, and

zdy = g g(=) + 9())
2Oy 9 (9(z) — 9(¥)),
zOy = g '(g(z) - g9(y)) and
Ty 9 g(z) / 9(y)), y #0.

The function corresponding to a function f introduced by the g-calculus
will be called the g-function and we denote it by f, (see Definition 3).

Definition 1. A continuous function f,; such that it is a solution of the
functional equation

fo(z) @ fo(y) = fg(l' ©y) and fg(g_l(a)) =1, where a >0, a #1

will be called the g-logarithmic function and denoted by logéa T,

Theorem 1. For every x € (0, +00) it holds

(1) log, 7 = g7(log, g(z)).

Proof. The requirement that x € (0, +oc0) follows from the properties of a
logarithmic function.
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Using Theorem 2 and Corollary 3.4 [3] we can rewrite the equation
fo(2)® fo(y) = fo(z © y) in the form

97 g(fo(2)) + 9(£o(1)) = Fo(g7 " (9(2) - 9(v)))-

Because of ¢~ !(g(z)) = z we have

5 o) + 9(f () = 07 a(fala™ (a(2) - 9(w)))))

and further
9(f5(2)) + 9(fo(9)) = 9(fo(g™" (9(=) - 9(9))))-
Now, putting z = g7 !(g(z)) and y = g7 1(g(y)) we obtain

9(f3lg™ (@) + g(fo(g7 (g(¥)))) = 9(fo(g7 (g(z) - 9(¥))))-

If we denote g(z) = u, g(y) = v and g(f,(¢g~'(z))) = ®(z), then we can
express the last functional equation as

®(u)+ ®(v) = ®(u-v), P(a) = 1.

According to Aczel [1], the logarithmic function is the only continuous so-
lution of this functional equation, i.e. ®$(z) =log,z, a > 0, a # 1. Thus
9(fs(g7 (2))) = log, z, @ > 0 and from this follows that

fa(®) = 97X (log, 9(2))- Hence 10 & = g™!(log, g(x)). O

Definition 2. A continuous function f, such that it is a solution of the
functional equation

fo(2) © fo(y) = folz b y), fo(1) = g7 (a), where a > 0, a # 1 will be

called a g-exponential function and denoted by a; .

Theorem 2. For every z € (—oc,+00) it holds

T

(2) ag — g—l(ag(z))'
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Proof. We use the same technique as applied to prove Theorem 1, and
we employ the fact that the functions ¢ : @(z) = ¢®, @ > 0 are the only
continuous solution of the functional equation ®(u)-®(v) = ®(u+v), ®(1) =
a.d

Theorem 3. The g-exponential function is an inverse function of a g-loga-
rithmic function.

Proof. The g-logarithmic function is given by the formula y = g~!(log, g(z)).
From whence it follows that g(y) = log, g(z) then a%®) = g(z) and = =

g 1(a?®). Now, if we apply (2) , we have z = agy .a
Remark 1. Using the same aproach we can introduce the g-power func-
tion which will be denoted by y = 'T'gr , 7 > 0. It is one of the increasing

continuous solutions of the functional equation

fg(l‘) © fg(y) = fg(‘l: © y)'

This function is given by
(3) gg =97 ((g(2))"), 7 > 0, where z € [0, +00).

Now, we shall genaralize the results achieved above.

Definition 3. Let f be a continuous function on (a,b), where (a,b)g —o00, 00)
and the function g be a generator of the consistent system of pseudo-arith-
metical operations {®,0,®,0}. The function f, given by

(4) folz) = g7 (f(9(x))) for every z € (g7*(a),g7*(b))

15 said to be the g-function corresponding to the function f. This fact is
denoted by

[ g,
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Remark 2. It is easy to see that, for any f. it is

()™ =™

(if at last one side of this equality exists).

Example 1. Let g be a function given by g(z) = 2, where z € (~00, +0)
and the function f is defined on the interval (—oo,+00) by f(z) = (1 +
z)3. The consistent system of the pseudo-arithmetical operations which is
generated by this function g will be the system {&,5,®,®} such that

rhy = VEE+y? 0y = z-y

Oy = Val-y? 20y =

’l‘hen the g- function fg corresponding to the function f is defined by f,(z) =
(14 23)3 =1+ 2* where z € (—o0, +0).

@8

Theorem 4. Let the function g be a generator of the consistent system of
the pseudo-arithmetical operations {®,6, ,0}. Let f and h be continuous
functions on (a,b), where (a,b) C (~o00,4+20) and a € (—o00,+00) is a
constant. Then we have

(a) a-f(z) F g7 a) O f(z),
(b) flz)+h(z) F fo(z)D hy(z),
(¢) flz)=h(z) F fo(z)© hy(z),
(d)  flz)-h(z) F9 fol2)© hy(a),
(€) fed 1o fy(2) 0 hyla)

for every x € (g7 (a), g7 1(b)).

Proof. We shall prove only the formula (b) because the proof of other for-
mulas is based on the same principles. Put k(z) = f(z) + h(z). Using (4)
and the definition of the pseudo-addition [3] we have

ko(z) =g ' [k(g(2))] = g7 f(g(2)) + h(g(2)) ] =
—g 1[g( 1 f(g(2)) + g(g7 (R(g(x)))] =
= g7 [g(fo(x)) + g(hy(2))] = fy(@) @ hy(x) .

Hence k(z) = f(z)+ h(z) F9 ky(x) = fo(x) @ hy(2)O

Corollary 1. The g-function f, corresponding to the function f can be ez-
pressed by using the pseudo-arithmetical operations, so that we replace in
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the ruling of the function f :

(1) every constant a by the constant g~ (),

(2) every elementary function by the g-elementary function,

(8) every arithmetical operation by the corresponding pseudo-arithmetical
operation.

Example 2. Let it be required to find the g-function corresponding to the
function f : f(z) = z -log 1 where z € (0,+00). Using (4) we have

1
g(z)

Now, we show that this formula can be expressed in the way described in
Corollary 1.

Then fo(z) = g7 '(g(z) - log g(l—x)) =g Yg(z)-log ﬁ) =

fo(z) = g7 (g(z) - log ) for every z € (0,400).

=97 (9(x)-9(g™ " (log g (g™ (575))))) = 97" (9(2)-9( 108 (g7 (HL ) =

=97 (g(z) - g( l(ég ' Mor)=z0 hég (g7 (1) @ ). Whence
T -log% Foz 1Ogg (g7'(1) @ z).

3. g-derivatives and some properties of g-functions

The notion of a g-derivative built on the operations of the pseudo-addition
and pseudo-multiplication was introduced by E. Pap [5]. He applied this
notion to solve some nonlinear differential equations. Now we shall give a
definition of the g-derivative of the g-functions.

Definition 4. Let g be a function which generates a consistent system of
the pseudo-arithmetical operations {®,8,0, 0} and let g be differentiable
on (—00,400). Further, let the function f be continuous and differentiable
on (a,b), where (a,b) C (—o0,400). Then, the g-derivative of a function
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f is defined by

@
d—f( ) = g"l(%g(f(x))) for every z € (a,b).

Proposition 1. The basic properties of the g-derivatives (see [5]) hold for
the g-functions too. Then

(@) (fo(2) B hy(z)) = Lfy(z)® Shy(z),

(b) i_:( O f,(x)) = A® %fg(x),,\ is constant ,

(©) L(fe(2)Ohylz)) = (L fy(2)0 hy(2)) B (fo(z) 0 Lhy(z)),
(d) E2f(z) = g7 (Eg(f,(2),neN,

where ‘jmf (z) =& [dl(iz;l)l@ k(z)] is a g-derivative of the n-th order.

Theorem 5. If the functions f and g satisfy the assumptions of Definition
4 and they are n-times differentiable on (a,b), n € N, then we have, for
every z € (97 (a),g1(b)) and k =1,2,...,n,

k k
(5) e h@) = L fa(e)]

Proof. Using Proposition 1 and (4) we obtain

Y 2g(fy(2)) = ¢ (g (97 (flg(2))))) =

PO f(z) = g-
= gL f(g(e))).0

Now, we will show some properties of the g-functions. Consider a function g
which is the generator of a consistent system of the pseudo-arithmetical oper-
ations {@,6,®, @} on (—oc0, +00) and a function f such that it is continuous

n (a,b), where (a,b) C (—o0,+0o0). Let f, be the g-function corresponding
to the function f, i.e.

fo(z) = g7 (f(9(x))) for every @ € (g7 (a), g™ (b)).

Theorem 6. The function f, increases [decreases] on the interval
(¢7Y(a),g71(d)) iff f is an increasing [decreasing] function on the interval

(a,b).
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Proof. (=) Let f, be an increasing function on (¢g~*(a),¢~1(8)) and y;,y2 €
(a,b). Then, z1 = ¢g7'(y1) and z3 = g~ 1(y2) lie in the interval (g7 (a), g~"(b)).
Using the fact that ¢ and ¢! are increasing functions we obtain

n<y2=>z1=9"" (1) <zz =9 (1) > fy(z1) < fo(z2).

According to (4) it is
fo(z1) = g7 (f(g(21))) = 97 (flg(g™ (1)) = 97 (f(v1)) and similarly
fo(22) = 71 (f(y2))- Then

n <y =97 (F(n)) < g7 (F(w) = f(n) < f(y2)-
It means that the function f increases on the interval (a,b).
(<) If fis an increasing function on (a,b) and z1,z2 € (¢7(a), g7 (b))
then y; = g(z1) and y, = g(z2) belong to (a,b). Thus we have
21 <z > g1 = g(e1) < va = g(22) > f9(ar)) = f(n) < f(y2) =

f(g(x2)). Hence ¢7'(f(g(21))) < g7'(f(g(z2))), where g~'(f(g(z1))) =
fo(z1) and ¢71(f(g(z2))) = fy(x2). It means that the following holds

1 < 22 = fo(z1) < fy(z2) for every z1,z2 € (g7 (a),g7'(b)) and the
function f, increases on the interval (¢7!(a),¢~1(5)).0

Theorem 7. Let the function f, be increasing [decreasing] on the interval
(97Y(a),g71(b)). Then we have ‘%fg(z) >0 [fl—jfg(:z;) < 0] for every z €

(97 (a), g7 (b))

Proof. Assume f, is an increasing function on (¢~%(a),g7%(b)). According
to Theorem 6 the function f is increasing on (a,b) and f'(2) > 0 for every
z € (a,b). Using Theorem 5 we obtain

d69 -1 d -1 4 !
o) =97 (- f(9(2))) = 97" (f(9(=)) - ¢'(<))

for every z € (g7 (a),g~'(b)). Further, let zo € (¢ '(a),g~ (b)) be an
arbitrary point. Then yo = ¢g(zo) belongs to (a,b) and -

a®

< Jo(z0) = 97 (f(9(0)) - ¢'(0)) = 97" (f'(0) - 9'(20))-

Because of ¢'(zo) > 0 for every zo € (—00,+00) we have f'(yo) - g'(2z0) > 0

and ¢~ (f'(v0)-g'(2z0)) > 0. It means that %fg(flf‘o) =g Y f'(%)-¢'(%0)) > 0
for every z¢ € (97 1(a),¢g~1(b)).0
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Definition 5. Let I C (—00,+00) be an interval and the function f, satis-

fies
Aoz s (186A)022)) S (A0 fo(21)) & (18 4) O fo(z2))
[fa((Aoz) @ (16A)022)) 2 (A0 fo(21)) B (16 A) O fo(z2))]
for every xy,x9 € I,z1 # z2 and for every A € (0,1).

Then, the function f; is said to be pseudo-convex [pseudo-concave] on
the interval I.

Theorem 8. If a function f is convez [concave] on the interval (¢,d), where
(e,d) C (a,b), then the function f, is pseudo-convex [pseudo-concave] on the

interval (g7 (c), g~ }(d)).
Proof. Let a function f be convex on the interval (e, d), i.e.

(6) SO+ (=X y2) <A flyn) + (1= A)- fy2)
for every y1,vy2 € (¢,d), y1 # y2 and A € (0,1). Take arbitrary zy,z, €

(97*(c),g71(d)),z1 # 3. Then y; = g(z;) and y2 = g(z2) belong to (¢, d).
Using the definitions of the pseudo-arithmetical operations and (4) we obtain

fll(Aoz) s (s o)) =
= folo™ (g(A) - g(z1)) & (97 (9(1) — 9(A)) © z2)] =
folg™ (g(N) - g(z1)) & (97" ((9(1) — 9(N)) - g(z2))] =
folg™ (g(A) - g(z1) + (9(1) — g(N)) - g(22))] =
= 97 (f(g(N) - 9(21) + (9(1) = 9(A)) - 9(22)))-
Further we denote by a = g(A). From the properties of the function g if
follows that « € (0,1) and g(1) = 1. Then

f(Aoz) @ (16X 0 22)) = g7 (fle-m + (1 - a) 1))

According to (6) itis f(a-y1 +(1—a)-y2) < a- f(p)+ (1 — ) f(y2) and
g Hflaeyi+(1—a) y2) <g e f(1r)+(1—a)- f(y2)). Now, we make
up the right side of this inequality:

g7 e f(y) + (1 — @) f(y2)) =

“Ma(A) - flg(z)) + (9(1) — g(N) - fg(z2))] =

“g(A) - 9(g7(fg(z1)))) + 997" ((9(1) — 9(N))) - 9(g7 (fg(22))))] =
“Hg(A) - g(fo(z1)) + 9(1 © A) - g(fo(z2))] =

“g(A 0 fu(z1)) + 9((10X) O fy(z2))] =

(AO fo(21)) & (1O AN) O fy(z2))

~~~ A~~~

g
g
g
g

o unn
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Thus it will be shown that this inequality has the form f,(A® )@ ((15
A)Ox2)) (A fo(21)) & ((18 A)© fy(x2)) and the function f,; is pseudo-
convex on the interval (g71(¢),g971(d)).0

Remark 3. 1. Combining Example 2 and Theorem 8, we see that f,(z) =
9 Yg(z)-log glx ) defines a pseudo-concave g-function. This function can be
applied in the study of the entropy of &-decomposable probability measures.
2. Note that f, may be pseudo-convex [pseudo-concave] even it its second
g-derivative is not non-negative [non-positive] on (¢7'(¢),¢7'(d)). This is
caused by the generator g, which is required to be increasing only.
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