Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 25, 2 (1995), 57-65 Review of Research Faculty of Science Mathematics Series

GAUSSIAN COLOMBEAU GENERALIZED RANDOM PROCESSES

Zagorka Lozanov Crvenković, Stevan Pilipović

Institute of Mathematics, University of Novi Sad Trg Dositeja Obradovića 4, 21000 Novi Sad, Yugoslavia

Abstract

We give the definition of a Gaussian Colombeau generalized process and necessary and sufficient conditions for existence of a Gaussian Colombeau generalized process in terms of its correlation function which is a Colombeau generalized function. We consider the Wiener process in Colombeau's sense.

AMS Mathematics Subject Classification (1991): 60G20 Key words and phrases: Colombeau generalized functions, Gaussian generalized random process, correlation function, Wiener process.

1. Introduction

Generalized random processes (g.r.p.) with paths in Colombeau space of new generalized functions \mathcal{G} were introduced and analyzed in [5] and [1] in connection with stochastic differential equations. There are two different ways of introducing these g.r.p.

We can consider Colombeau g.r.p. as a class of functions which can be represented by the mapping $(\omega, \varphi, x) \mapsto R(\omega, \varphi, x)$, $(\omega$ belongs to the probability space Ω , φ is in a certain functions space and $x \in T$, T is an interval of the real line \mathbf{R}) such that R is measurable as function of ω ,

for every fixed φ and x, and for almost every ω $R(\omega, \cdot, \cdot)$ is in Colombeau space \mathcal{E}_M . Or, it may be treated as a C^{∞} mapping from T to $L^p(\Omega)$ with appropriate estimates:

By following an idea of [1] we define a subclass of the space of C g.r.p. with paths in \mathcal{G} which enables us to introduce and analyse the Gaussian Colombeau g.r.p. Also, we present the Wiener process in this contex.

2. Basic notions

Let T be an open subset of \mathbf{R} and $C_0^{\infty}(T)$ the space of complex valued functions defined on \mathbf{R} with compact supports contained in T. Denote

$$\mathcal{A}_0(\mathbf{R}) = \{ \varphi \in C_0^{\infty}(\mathbf{R}); \int \varphi(x) dx = 1 \},$$

and for $q \in \mathbb{N}_0$,

$$\mathcal{A}_q(\mathbf{R}) = \{ \varphi \in \mathcal{A}_0; \int x^j \varphi(x) dx = 0, \ 0 < j < q \}.$$

Also,

$$\begin{array}{l} A_q(\mathbf{R}^n) = \{ \phi \in C_0^\infty(\mathbf{R}^n); \, \phi(x_1, ... x_n) = \prod_{i=1}^n \varphi(x_i), \, \varphi \in \mathcal{A}_0(\mathbf{R}) \}. \\ \text{Put } \varphi_{\varepsilon}(x) = \frac{1}{\varepsilon} \varphi(\frac{x}{\varepsilon}), \, \, \phi_{\varepsilon}(x) = \frac{1}{\varepsilon^n} \phi(\frac{x}{\varepsilon}), \, \, \check{\varphi}(x) = \varphi(-x), \, \, x \in \mathbf{R}. \end{array}$$

The basic space $\mathcal{E}(T)$ consists of all the functions $R: \mathcal{A}_0(\mathbf{R}) \to C^{\infty}(T)$. It is an algebra with multiplication. More important is the subalgebra of moderate elements $\mathcal{E}_M(T)$:

$$\mathcal{E}_{M}(T) = \begin{cases} R(\varphi, x) \in \mathcal{E}(T); & \forall K \subset \subset T, \\ \forall \alpha \in \mathbf{N}_{0}, & \exists N \in \mathbf{N}_{0}, & \forall \varphi \in \mathcal{A}_{N}, & \exists \eta, & \exists C > 0, \\ sup\{|\partial^{\alpha}R(\varphi_{\varepsilon}, x)|, & x \in K\} \leq C\varepsilon^{-N}, & 0 < \varepsilon < \eta\} \end{cases}$$

Denote by Γ the set of sequences $\{a_q\}$ with positive elements which strictly increase to infinity. Then, the set of null elements $\mathcal{N}(T)$ in $\mathcal{E}(T)$ is defined as follows:

$$\mathcal{N}(T) = \begin{cases} R \in \mathcal{E}(T); \ \forall K \subset C \ T, \\ \forall \alpha \in \mathbf{N}_0, \ \exists N \in \mathbf{N}_0, \ \exists \{a_q\} \in \Gamma, \ \forall q \geq N, \ \forall \varphi \in \mathcal{A}_q, \ \exists \eta, \ \exists C > 0, \\ sup\{|\partial^{\alpha}R(\varphi_{\varepsilon}, x)|, \ x \in K\} \leq C\varepsilon^{a_q - N}, \ \ 0 < \varepsilon < \eta\}.$$

The space of generalized functions on T, $\mathcal{G}(T)$ is defined by

$$\mathcal{G}(T) = \mathcal{E}_{M}(T)/\mathcal{N}(T).$$

The multiplication and derivation in $\mathcal{G}(T)$ are given by

$$RG = [R(\varphi, \cdot)G(\varphi, \cdot)], \quad \partial^{\alpha}R = [\partial^{\alpha}R(\varphi, \cdot)],$$

where by [R] is denoted the class of equivalence in $\mathcal{G}(T)$ with the representative $R(\varphi,\cdot)$.

3. Colombeau generalized random processes

Let (Ω, \mathcal{F}, P) be a probability space and T be an open interval of real line. Denote by $\mathcal{E}(\Omega, T)$ the space of functions $R: (\Omega, \mathcal{A}_0, T) \to \mathbf{C}$ such that for every $\varphi \in \mathcal{A}_0$, $(\omega, x) \mapsto R(\omega, \varphi, x)$ is a C^{∞} function in x and $\{R(\cdot, \varphi, x); (\varphi, x) \in \mathcal{A}_0 \times T\}$ is a compatible family of random variables. Let

$$\mathcal{E}_{M}(\Omega, T) = \begin{cases} R(\omega, \varphi, x) \in \mathcal{E}(\Omega, T); & \text{a.e. } \omega \ \forall K \subset C \ T, \\ \forall \alpha \in \mathbf{N}_{0}, \ \exists N \in \mathbf{N}_{0}, \ \forall \varphi \in \mathcal{A}_{N}, \ \exists \eta, \ \exists C > 0, \\ sup\{|\partial^{\alpha}R(\omega, \varphi_{\varepsilon}, x)|, \ x \in K\} \leq C\varepsilon^{-N}, \ 0 < \varepsilon < \eta\} \end{cases}$$

and

$$\begin{split} \mathcal{N}(\Omega,T) = & \quad \{R \in \mathcal{E}(\Omega,T); \text{ a.e. } \omega, \ \forall K \subset \subset T, \ \forall \alpha \in \mathbf{N_0}, \\ & \quad \exists N \in \mathbf{N_0}, \ \exists \{a_q\} \in \Gamma, \ \forall q \geq N, \ \forall \varphi \in \mathcal{A}_q, \ \exists \eta, \ \exists C > 0, \\ & \quad sup\{|\partial^\alpha R(\omega,\varphi_\varepsilon,x)|, \ x \in K\} \leq C\varepsilon^{a_q-N}, \ \ 0 < \varepsilon < \eta\}. \end{split}$$

Then we define

$$\mathcal{G}(\Omega,T) = \mathcal{E}_{M}(\Omega,T) / \mathcal{N}(\Omega,T).$$

The Colombeau theory of generalized functions can be adapted to the vector valued case $L^p(\Omega)$ (see [5] and [1]).

We define $\mathcal{E}(T, L^p(\Omega)), p \geq 1$ as a space of all functions

$$\mathcal{A}_0 \times T \ni (\varphi, x) \mapsto R(\cdot, \varphi, x) \in L^p(\Omega)$$

which are C^{∞} mapping for each fixed $\varphi \in \mathcal{A}_0$. The space of moderate elements in $\mathcal{E}(T, L^p(\Omega))$ is denoted by $\mathcal{E}_M(T, L^p(\Omega))$:

$$\begin{array}{ll} \mathcal{E}_{M}(T,L^{p}(\Omega)) = & \{R(\omega,\varphi,x) \in \mathcal{E}(T,L^{p}(\Omega)); \forall K \subset \subset T, \ \forall \alpha \in \mathbf{N}_{0}, \\ & \exists N \in \mathbf{N}_{0}, \ \forall \varphi \in \mathcal{A}_{N}, \ \exists \eta,C > 0, \\ & ||\partial^{\alpha}R(\varphi_{\varepsilon},x)||_{p} \leq C\varepsilon^{-N}, \ \ x \in K, \ 0 < \varepsilon < \eta. \} \end{array}$$

The set of null elements is:

$$\begin{split} \mathcal{N}(T,L^p(\Omega)) = \quad & \{R(\omega,\varphi,x) \in \mathcal{E}(T,L^p(\Omega)); \forall K \subset \subset T, \ \forall \alpha \in \mathbf{N}_0, \\ & \exists N \in \mathbf{N}_0, \ \exists \{a_q\} \in \Gamma, \ \forall q \geq N, \ \forall \varphi \in \mathcal{A}_q, \ \exists \eta,C > 0, \\ & ||\partial^\alpha R(\varphi_\varepsilon,x)||_p \leq C\varepsilon^{a_q-N}, \ \ x \in K, \ 0 < \varepsilon < \eta. \} \end{split}$$

The space of Colombeau generalized random processes (C g.r.p.) is then defined as:

$$\mathcal{G}(T, L^p(\Omega)) = \mathcal{E}_M(T, L^p(\Omega)) / \mathcal{N}(T, L^p(\Omega)).$$

We shall consider special elements of $\mathcal{G}(T, L^p(\Omega))$ which are important for practical use.

We say that $G \in \mathcal{G}(T, L^p(\Omega))$ has a modification if there is a representative of G, R_G which belongs to $\mathcal{E}_M(\Omega, T)$, which means that R_G satisfies both conditions (*) and (**). A subspace of $\mathcal{G}(T, L^p(\Omega))$ with elements having modifications will be denoted by $\tilde{\mathcal{G}}(T, L^p(\Omega))$.

Definition 1. Let $G \in \tilde{\mathcal{G}}(T, L^p(\Omega))$ with the modification R_G . Then the mathematical expectation of G is defined as an element of $\mathcal{G}(T)$ represented by

$$m(\varphi, x) = E(R_G(\varphi, x)).$$

Definition 2. Let $G \in \tilde{\mathcal{G}}(T, L^p(\Omega))$ with the modification R_G . Then, the correlation function of G is defined as an element of $\mathcal{G}(T \times T)$ represented by

$$B_{\varphi \bigotimes \psi}(x,y) = E(R_G(\varphi,x)R_G(\psi,y)).$$

4. Derivation of C g.r.p.

In $\mathcal{G}(T, L^p(\Omega))$ we shall consider two types of derivation.

1. Almost sure derivation: If $G = [R_G] \in \mathcal{G}(T, L^p(\Omega))$ then $\partial_x G = [\partial_x R_G] \in \mathcal{G}(T, L^p(\Omega))$ is almost sure derivative of G if for every $x \in T$

$$\frac{R_G(\omega,\varphi,x+h)-R_G(\omega,\varphi,x)}{h}\to \partial_x R_G(\omega,\varphi,x),\ \ h\to 0,\ a.e.\ \omega.$$

2. L^p derivation: If $G = [R_G] \in \mathcal{G}(T, L^p(\Omega))$ then $F = [R_F] \in \mathcal{G}(T, L^p(\Omega))$ is L^p derivation of G, F = G' if for every

$$rac{R_G(\omega,arphi,x+h)-R_G(\omega,arphi,x)}{h}\stackrel{L^p}{
ightarrow} R_F,\;\; h
ightarrow 0.$$

We shall show that in $\tilde{\mathcal{G}}$ these two notions coincide.

Theorem 1. Let $G \in \tilde{\mathcal{G}}(T, L^p(\Omega))$ with modification R_G . Then G' is represented by $\partial_x R_G$.

Proof. Let $F = [R_F]$ be L^p derivative of $G = [R_G] \in \tilde{\mathcal{G}}(T, L^p(\Omega))$. It means that

 $\frac{R_G(\omega,\varphi,x+h)-R_G(\omega,\varphi,x)}{h}\stackrel{L^p}{\to} R_F, \ h\to 0.$

We have that almost sure derivation of G is represented by $\partial_x R_G$:

$$\frac{R_G(\omega,\varphi,x+h)-R_G(\omega,\varphi,x)}{h}\stackrel{a.e.}{\to} \partial_x R_G, \ h\to 0.$$

However, since the limit of a sequence $X_n \in L^p$ in L^p is unique, we have $X = X_1$. (see [3]). Hence, $R_F = \partial_x R_G$.

Of course, the theorem holds for derivations of higher order:

Theorem 2. Let $G \in \tilde{\mathcal{G}}(T, L^p(\Omega))$ with modification R_G . Then $G^{(\alpha)}$ is represented by $\partial_x^{(\alpha)} R_G$.

The conection between the exisistence of L^2 derivatives of $G \in \tilde{\mathcal{G}}(T, L^2(\Omega))$ and derivatives of the expectation and correlation function gives the following theorem [4].

Theorem 3. The Colombeau g.r.p. $G \in \tilde{\mathcal{G}}(T, L^2(\Omega))$ with modification R_G has L^2 derivative in $x_0 \in T$ if and only if there exist derivative $m'_G(\varphi, x) = [E(R_G(\varphi, x))]'$, at x_0 and the second derivative $\frac{\partial^2}{\partial x \partial y} B^G_{\varphi \bigotimes \psi}(x, y)$ at (x_0, x_0) . Also,

$$m_G'(\varphi, x) = m_{G'}(\varphi, x), \ x \in T,$$

and

$$\frac{\partial^2}{\partial x \partial y} B^G_{\varphi \bigotimes \psi}(x,y) = B^{G'}_{\varphi \bigotimes \psi}(x,y), \ \ x,y \in T.$$

Now, since G' is represented by R_G from Theorem 1 and Theorem 3 it follows:

Corollary 1. Let $G \in \tilde{G}(T, L^2(\Omega))$ with the modification R_G Then

(1)
$$\frac{\partial}{\partial x}m(\varphi,x) = E(\frac{\partial}{\partial x}R_G(\varphi,x)), \ x \in T,$$

(2)
$$\frac{\partial^2}{\partial x \partial y} B_{\varphi \bigotimes \psi}(x, y) = E\left[\frac{\partial}{\partial x} (R_G(\varphi, x) \frac{\partial}{\partial y} R_G(\psi, y))\right], \ x, y \in T.$$

Since the random variable $[R_G(\varphi,x)]^2$ is positive, its mean $B_{\varphi \bigotimes \varphi}(x,x)$ = $E[R_G^2(\varphi,x)]$ is also positive so the correlation function $B_{\varphi \bigotimes \psi}(x,y)$ is positive definite. Moreover, the covariance function $C_{\varphi \bigotimes \psi}(x,y)$ defined by

$$C_{\varphi \bigotimes \psi}(x,y) = B_{\varphi \bigotimes \psi}(x,y) - m(\varphi,x) m(\psi,y),$$

where $m(\varphi, x) = E[R_G(\varphi, x)]$, is positive definite. Indeed,

$$\begin{split} C_{\varphi \bigotimes \varphi}(x,x) &= B_{\varphi \bigotimes \varphi}(x,x) - m(\varphi,x) m(\varphi,x) = \\ &= E[R_G(\varphi,x)R_G(\varphi,x)] - 2E[R_G(\varphi,x)] m(\varphi,x) + m^2(\varphi,x) = \\ &\quad E[|R_G(\varphi,x) - m(\varphi,x)|^2] \ge 0. \end{split}$$

5. Gaussian Colombeau generalized random process

Definition 3. Let $G \in \tilde{\mathcal{G}}(T, L^2(\Omega))$ with modification R_G . It is said that G is a Gaussian Colombeau grp (GC g.r.p.) if for any $\varphi_1, ..., \varphi_n \in \mathcal{A}_0$ and $x_1, ..., x_n \in \mathbf{R}$ the probability that the random variable $\mathbf{X} = (R_G(\varphi_1, x_1), ..., R_G(\varphi_n, x_n))$ belongs to a Borel set S, is

(3)
$$P\{\mathbf{X} \in S\} = \int_{S} \frac{\sqrt{\det \mathbf{\Lambda}}}{(2\pi)^{n/2}} exp\{-\frac{1}{2}(\mathbf{\Lambda}t, t)\} dt,$$

where Λ is a non-degenerate positive definite matrix, and

$$(\mathbf{\Lambda}t,t) = \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{ij} t_i t_j.$$

Theorem 4. Let G be a GC g.r.p. with modification R_G . Then for any independent functions $\varphi_1, ..., \varphi_n \in \mathcal{A}_0$ and $x_1, ..., x_n \in \mathbf{R}$,

(4)
$$\Lambda = ||B_{\varphi_i \bigotimes \varphi_j}(x_i, x_j)||^{-1}.$$

Proof. By the definition of the correlation function of GC grp we have

$$B_{\varphi_i \bigotimes \varphi_j}(x_i, x_j) = E[R_G(\varphi_i, x_i)R_G(\varphi_j, x_j)].$$

The random variable $(R_G(\varphi_i, x_i)R_G(\varphi_j, x_j))$ if a function of n-dimensional random variable **X** whose distribution function is given by (3). Thus,

(5)
$$E[R_G(\varphi_i, x_i)R_G(\varphi_j, x_j)] = \frac{\sqrt{\det \Lambda}}{(2\pi)^{n/2}} \int t_i t_j exp\{-\frac{1}{2}(\Lambda t, t)\} dt.$$

Now, following [2], pp 249, we compute integral (5) using the formula

(6)
$$\frac{\sqrt{\det C}}{(2\pi)^{n/2}} \int (At, t) exp[-\frac{1}{2}(Ct, t)] dt = Tr(AC^{-1})$$

which is valid for any strictly positive definite matrix C and any matrix A. We have that $t_i t_j = (A_{ij}t, t)$, where A_{ij} is the matrix, whose elements all vanish with the exception of a_{ij} , which equals 1. The integral in (3) is equal to $Tr(A_{ij}\Lambda)$. Since $A_{ij}\Lambda$ is the matrix whose all rows vanish with the exception of the *i*th row, which coincides with the *j*th row of Λ^{-1} . Therefore, $tr(A_{ij}\Lambda^{-1}) = \mu_{ij}$, where μ_{ij} are elements of Λ , and

$$E[R_G(\varphi_i, x_i), R_G(\varphi_j x_j)] = \mu_{ij},$$

Theorem 5. The derivatives of a Gaussian Colombeau generalized process G is again a Gaussian Colombeau generalized process.

Proof. Since $G \in \tilde{\mathcal{G}}(T, L^p(\Omega))$, we have that its derivative G' is determined by the derivative $\partial_x R_G$ of the modification R_G , where the family $\{R_G(\omega, \varphi, x); (\varphi, x) \in \mathcal{A}_0 \times T\}$ is Gaussian. Thus, we have that for almost every $\omega \in \Omega$

$$\partial_x R_G(\omega,\varphi,x) = \lim_{h \to 0} \frac{R_G(\omega,\varphi,x+h) - R_G(\omega,\varphi,x)}{h}.$$

Since for the Gaussian variables an almost sure convergence implies the L^2 convergence, we can consider the linear closure of the family $\{R_G(\omega, \varphi, x); (\varphi, x) \in \mathcal{A}_0 \times T\}$ which is Gaussian. The family $\mathbf{Z} = \{\partial_x R_G(\omega, \varphi, x); (\varphi, x) \in \mathcal{A}_0 \times T\}$ is a subfamily of \mathbf{Z} , and therefore Gaussain.

6. Wiener process

The space \mathcal{CP} of ordinary stochastic processes with almost continuous paths can be embedded in $\tilde{\mathcal{G}}(T, L^2(\Omega))$ by

$$\mathcal{CP}
i Z o ((\omega, arphi, x) o \int_{\mathbf{R}} Z(s, \omega) arphi_{arepsilon}(s-x) ds).$$

Let W be a Wiener process. It is an element of \mathcal{CP} and

$$W * \varphi_{\varepsilon} = \int_{\mathbf{R}} W(s) \varphi_{\varepsilon}(s-x) ds$$

is the corresponding element of $\tilde{\mathcal{G}}(\Omega, T, L^2(\Omega))$. Its mathematical expectation is zero, and the correlation function is given by

$$\begin{split} B^W_{\varphi \bigotimes \psi}(x,y) &= E[(W * \check{\varphi})(x)(W * \check{\psi})(y)] = \\ \int_{\mathbf{R}} \int_{\mathbf{R}} E[W(t)W(s)]\varphi(t-x)\psi(s-y)dtds. \end{split}$$

Since

$$E[W(t)W(s)] = \begin{cases} min\{t, s\}, & t, s \ge 0, \\ 0, & t < 0, \text{ or } s < 0 \end{cases}$$

we have, after integration by parts:

$$\int_0^\infty \int_0^\infty \min\{t,s\} \varphi(t-x) \psi(s-y) dt ds =$$

$$= \int_0^\infty \varphi(t-x) \int_0^t s \psi(s-y) ds dt + \int_0^\infty \psi(s-y) \int_0^s t \varphi(t-x) dt ds =$$

$$= \int_0^\infty (\int_t^\infty \varphi(v-x) dv \int_t^\infty \psi(u-y) du) dt.$$

The derivative of W is determined by

$$\frac{\partial^2}{\partial x \partial y} B_{\varphi}^W \bigotimes_{\psi} (x, y) = \int_0^{\infty} (\int_t^{\infty} \varphi'(v - x) dv \int_t^{\infty} \psi'(u - y) du) dt =$$

$$= \int_0^{\infty} \varphi(t - x) \psi(t - y) dt.$$

References

- [1] Albeverio, S., Haba, Z., Russo, F., Trivial solutions for a non linear two - space dimensional wave equation perturbed by space - time white noise, Analyse, Probabilites, Topologie, Unité de Recherche Associée au CNRS 0225
- [2] Gel'fand, I. M., Vilenkin, N. Ya., Generalized Functions, vol. 4, Academic Press, New York, 1964.
- [3] Loève, M., Probability Theory, Van Nostrand Company, Inc., Toronto, New York, London, 1955.
- [4] Mališić, J., Slučajni procesi, Gradjevinska knjiga, Beograd, 1989.
- [5] Oberguggenberger, M., Generalized functions and stochastic processes, (preprint)

Received by the editors January 13, 1995