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Abstract

We give the definition of a Gaussian Colombeau generalized pro-
cess and necessary and sufficient conditions for existence of a Gays-
sian Colombeau generalized process in terms of its correlation function
which is a Colombeau generalized function. We consider the Wiener
process in Colombeau’s sense.
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1. Introduction

Generalized random processes (g.r.p.) with paths in Colombeau space of
new generalized functions G were introduced and analyzed in [5] and [1] in
connection with stochastic differential equations. There are two different
ways of introducing these g.r.p.

We can consider Colombeau g.r.p. as a class of functions which can
be represented by the mapping (w,y,z) — R(w,p,z), (w belongs to the
probability space 2, ¢ is in a certain functions space and z € T, T is an
interval of the real line R) such that R is measurable as function of w,
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for every fixed ¢ and z, and for almost every w R(w,-,-) is in Colombeau
space &pr. Or, it may be treated as a C* mapping from T to L?(§)) with
appropriate estimates:

By following an idea of [1] we define a subclass of the space of C g.r.p.
with paths in ¢ which enables us to introduce and analyse the Gaussian
Colombeau g.r.p. Also, we present the Wiener process in this contex.

2. Basic noti(_)ns

Let T be an open subset of R and C§°(T) the space of complex valued
functions defined on R with compact supports contained in 7. Denote

Ao(R) = {p € C&(R); [ p(z)dz =1},
and for ¢ € Ny,

A,(R) = {p € Ap; [27p(z)dz =0, 0 < j < g}
Also,

Ay(R™) = {p € C&(R"); (21, ...n) = [[i21 p(zi), ¢ € Ao(R)}.
Put o.(z) = 19(2), 6:(z) = Zo(2), @(z) = ¢(-z), z € R,
The basic space £(T') consists of all the functions R : Ag(R) — C(T).

It is an algebra with multiplication. More important is the subalgebra of
moderate elements Ep(T) :

Em(T) = {R(p,z)€&(T); VK CCT,
Va € Ng, AN € No, Vo € Ay, Iy, 3C > 0,
sup{|0*R(pe,z)|, z € K} < Ce™V, 0 <e <)

Denote by T the set of sequences {a,} with positive elements which strictly
increase to infinity. Then, the set of null elements A(T) in £(T) is defined
as follows:

N(T)= {Re&T); VK cCT,
Va € Ny, 3N € Ng, I{a,} €T, Vg > N, Vp € Ay, I, 3C > 0,
sup{|0*R(pe, )|, z € K} < Ce® N 0<e <}

The space of generalized functions on T, G(T') is defined by
G(T) = Em(T)/N(T).
The multiplication and derivation in G(T') are given by

RG = [R(p,")G(p,)), 0°R=[0"R(e,")],
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where by [R] is denoted the class of equivalence in G(T") with the represen-
tative R(¢p,-).

3. Colombeau generalized random processes

Let (Q,F,P) be a probability space and T be an open interval of real
line. Denote by £(Q,T) the space of functions R : (2, 49,7) — C such
that for every ¢ € Ay, (w,z) — R(w,p,z) is a C* function in z and
{R(-,¢,2); (p,z) € Ag x T} is a compatible family of random variables.
Let

Em(Q,T)= {R(w,p,z)€&(Q,T); ae.w VK CCT,

Va € Ng, AN € Ng, Vo € Ay, dn, 3C > 0,
(*) sup{|0°R(w, ¢c, )|, s € K} < Ce™N, 0<e < n}

and

N(Q,T)= {Re&(Q,T); ae. w, YK CCT, Va € Ny,
dN € No, H{aq} €T, Vg> N, Vo € A,, I, 3C > 0,
sup{|0°R(w, ¢e,z)|, € K} < Ce%=N, 0<e<n}.

Then we define

The Colombeau theory of generalized functions can be adapted to the
vector valued case LP(Q) (see [5] and [1]).

We define £(T, LP(R2)), p > 1 as a space of all functions

Ao XT3 (‘P,x) = R(',(P,z) € LP(Q)

which are C*° mapping for each fixed ¢ € Ag. The space of moderate ele-
ments in (T, LF(Q)) is denoted by Ea(T, LP(Q)) :

Em(T, LP(Q)) = {R(w,¢,z) € (T, LP(Q));VK CC T, Yo € Ny,
AN € Ng, Vo € An, 3,C > 0,
(+x) 10°R(pe,z)llp <Ce™™, z€ K, 0<e<n}

The set of null elements is:

N(T,LP(Q)) = {R(w,p,z) € &E(T, LP(Q));VK CC T, Ya € Ny,
IN € No, Ha,} €T, Vg > N, Vo € A, 3n,C > 0,
0% R(pe,z)||p < Ce® N ze€ K,0<e<n.}
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The space of Colombeau generalized random processes (C g.r.p.) is then
defined as:
G(T, L () = Em(T, LP(Q))/ N (T, L7 (Q)).

We shall consider special elements of G(T, L?(2)) which are important
for practical use.

We say that G € G(T, L*(§2)) has a modification if there is a representa-
tive of G, Rg which belongs to £(Q,T), which means that R satisfies both
conditions (*) and (**). A subspace of G(T, L*(2)) with elements having
modifications will be denoted by G(T, LP(R2)).

Definition 1. Let G € G(T, L*(Q)) with the modification Rg. Then the
mathematical ezpectation of G is defined as an element of G(T') represented

by
m(¢,z) = E(Ra(p, z)).

Definition 2. Let G € G(T,L?(Q)) with the modification Rg. Then, the
correlation function of G is defined as an element of G(T x T') represented

by
B¢®¢(za y) = E(RG((P7 ll‘)Rg(T,D, y))

4. Derivation of C g.r.p.

In G(T', L?(2)) we shall consider two types of derivation.

1. Almost sure derivation: If G = [Rg] € G(T,LP(Q)) then 9.G =
[0:Rc] € G(T, L*(2)) is almost sure derivative of G if for every z € T

RG("‘),(P,z + h) - RG(W, (,D,ll‘)
h

— & Re(w,p,z), h — 0, a.e. w.
2. LP derivation: If G = [Rg] € G(T, L?(R)) then F' = [Rp] € G(T, LP(%2))
is LP? derivation of G, F' = G’ if for every

RG(&), ©, T+ h) - RG(W, ¥ Ll‘) l_/)”
h

Rp, h— 0.

We shall show that in G these two notions coincide.
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Theorem 1. Let G € G(T, LP(Q)) with modification Rg. Then G' is repre-
sented by O, Rq.

Proof. Let F = [Rp] be L? derivative of G = [Rg] € G(T, LP(?)). It means

that
RG(wa @, T+ h) - RG(&J,LP,:I?) g

h
We have that almost sure derivation of G is represented by 0, R :

Ry, h— 0.

RG("‘J, P,z + h) — RG(&J, (P,il)) a.e.

(o , h—0.
b I Re 0

However, since the limit of a sequence X, € L? in L? is unique, we have
X = X;. (see [3]). Hence, Rp = 0. Rg.

Of course, the theorem holds for derivations of higher order:

Theorem 2. Let G € G(T, LP(Q)) with modification Rg. Then G®) is rep-
resented by 8£Q)Rg.

The conection between the exisistence of L2 derivatives of G € G(T, L*(2))
and derivatives of the expectation and correlation function gives the follow-
ing theorem [4].

Theorem 3. The Colombeau g.r.p. G € G(T, L*(Q)) with modification Rg
has L? derivative in =9 € T if and only if there ezist derivative miy(p,z) =
‘ h p
[E(Rag(p,z))), at zo and the second derivative a2—ayBg®¢(a:,y) at (zo, To)-
Also,
mIG((P, 113) = mGI((P,iE), zeT,

and

9 _po BY, T
dzdy 9’®¢'($’y) - w®¢($’y)’ zyed.

Now, since G’ is represented by R from Theorem 1 and Theorem 3 it
follows:

Corollary 1. Let G € G(T, L*(Q)) with the modification Rg Then

(1) 2 mig,7) = B(a-Ra(p2)), 7 €T,
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2 o 0
(2) 9205 B, @4(z,v) = E[5—(Ra(e, x)@Ra(dﬁ,y))], z,yeT.

Since the random variable [Rg(y,))? is positive, its mean Btp®¢(z, T)
= E[R%(y,z)] is also positive so the correlation function B ®¢(x,y) is
positive definite. Moreover, the covariance function C¢®¢(z y) defined by

C¢®¢(zay) = Btp®¢(xay) - m(%z)m(i/’,y),
where m(p,z) = E[Rq(p, )], is positive definite. Indeed,
Co@o(#:2) = B, g, (3,2) - m(p,o)m(i, ) =

— ElRo(p,2)Ra(,2)] - 2E[Ra(p, 2)]m(,2) + m¥(p, ) =
B[|Ra(,2) - m(p, )] > 0.

5. Gaussian Colombeau generalized random pro-
cess |

Definition 3. Let G € G(T, L*(Q)) with modification Rg. It is said that G
is a Gaussian Colombeav grp (GC g.r.p.) if for any ¢1,...,0n € Ao and
T1,..., Ty € R the probability that the random variable X = (Rg(¢1,%1), -\
R (4n,2n)) belongs to a Borel set S, is

3) P{X €S} = / (2";2‘/‘2 ep{~5 (AL, D}

where A is a non-degenerate positive definite matriz, and

(A1) = 33 Mt

i=1 j=1

Theorem 4. Let G be a GC g.r.p. with modification Rg. Then for any
independent functions ¢1,...,¢on € Ag and z1,...,2, € R,

(4) A =B, g, (@)™
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Proof. By the definition of the correlation function of GC grp we have
B, ® ¢, (%i75) = E[Ra(pi, i) Ra(wj, 25)]-

The random variable (Rg(vi, ;) Ra(p;, ;) if a function of n—dimensional
random variable X whose distribution function is given by (3). Thus,

(5)  ElRo(pi,a)Ra(os2)] = Vd‘ii,ﬁ [ ttjesnt=5(at, 0t

Now, following [2], pp 249, we compute integral (5) using the formula

(6) (“2;1_625’;/ (At,1) e:z:p[——(C't t)]dt = Tr(AC™Y)

which is valid for any strictly positive definite matrix ¢ and any matrix
A. We have that t;t; = (A;;1,t), where A;; is the matrix, whose elements
all vanish with the exception of a;;, which equals 1. The integral in (3) is
equal to T'r(A;;A). Since A;; A is the matrix whose all rows vanish with the
exception of the ith row, which coincides with the jth row of A~!. Therefore,
tr(A;jA™1) = pi;, where p;; are elements of A, and

E[Ra(pi,2i), Ralpiz;)] = pij,

‘Theorem 5. The derivatives of a Gaussian Colombeau generalized process
G is again a Gaussian Colombeau generalized process.

Proof. Since G € G(T,ILP()), we have that its derivative G’ is deter-
mined by the derivative d;Rqg of the modification R, where the family
{Rg(w,p,z); (p,z) € Ag X T} is Gaussian. Thus, we have that for almost
every w € {}

. Rg(w,p,2+h) — Rg(w, 0,z
Oz Re(w, p, @) = lim et ;2 a(w,¢,2)

Since for the Gaussian variables an almost sure convergence implies the L2
convergence, we can consider the linear closure of the familly {Rg(w, ¢, z);
(p,2) € Ao x T} which is Gaussian. The familly Z = {9;Rq(w, ¢, z);
(p,z) € Ag X T'} is a subfamilly of Z, and therefore Gaussain.
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6. Wiener process

The space CP of ordinary stochastic processes with almost continuous paths
can be embedded in G(T, L%(Q)) by

CP>7 — (w,p,z) = / Z(s,w)p(s — z)ds).
R
Let W be a Wiener process. It is an element of CP and
W, = / W(s)pe(s — z)ds
R

is the corresponding element of G(Q, T, L2(Q)). Its mathematical expectation
is zero, and the correlation function is given by

BY g (@:9) = EW + )(2)(W + $)(y)] =

| [ EW W - 2pts - vydras.
RJR

Since (s}
min{t,s}, t,s>0,
EW ()W (s)] = { 0, t<0,ors<0

we have, after integration by parts:

[ [ mint st et - s =

- /0°° o(t — 2) /Ot sv(s — y)dsdi + /Ooo w(s— ) /0 to(t — 2)dtds =
_ /Om(/too (v — )dv /too B(u — y)du)dt.

The derivative of W is determined by

2 o oo -
a_;aa_yBK®¢($,y) = /0 (/t o'(v— :c)dv/t Y (u — y)du)dt =

= [ ett =yt - .
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