Univ. u Novom Sadu Review of Research
Zb. Rad. Prirod.—Mat. Fak. - Faculty of Science
Ser. Mat. 25, 2 (1995), 179-195 Mathematics Series

CHEMICAL GRAPHS, KEKULE STRUCTURES AND
FIBONACCI NUMBERS

Ratko Tosi¢!
Institute of Mathematics, University of Novi Sad
Trg Dositeja Obradoviéa 4, 21000 Novi Sad, Yugoslavia

Ivan Stojmenovié
Computer Science Dept., University of Ottawa
Ontario KIN 9B4, Canada

Abstract

In this paper a new formula for the number of Kekule structures of
an arbitrary benzenoid chain is obtained. Combining this formula and
some other known formulas, we derive some interesting combinatorial
identities (17), (18), (21-24), (27), some of them involving Fibonacci
numbers.
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1. Some preliminaries

A benzenoid system is a combinatorial geometric object obtained by arrang-
ing the regular hexagons in a plane so‘that two hexagons are either disjoint
or have a common edge.
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180 R. Tosié, I. Stojmenovié

There is a fairly obvious correspondence between a benzenoid hydro-
carbon and a benzenoid system. One example is given in Fig. 1 in which
the structural formula of a benzenoid hidrocarbon (phenantrene) and the
corresponding benzenoid system are shown.

In this paper we shall consider benzenoid systems as undirected graphs
comprised of 6-cycles.

Let there be a total of h such cycles (hexagons) which we shall denote
as Hy, Hy,..., Hy in each graph of interest. Bacause the problem we treat
arises from chemical studies of certain hydrocarbon molecules (benzenoid
chains), we impose upon Hy, H,..., Hy the following conditions to reflect
the underlying chemistry:

(i) Every H; and H;y shall have a common edge denoted by e;, for all
1<i<h-l1.

(ii) The edges e; and e; shall have no common vertex for any 1 < i <
j<h-1
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By representing the 6-cycles as regular hexagons in the plane we obtain a
planar realization of this graph, as illustrated in Fig. 2. In organic chemistry
such graphs correspond to benzenoid chains.

Fig. 2

In connection with the benzenoid chains the LA-sequnce is defined as an
ordered h-tuple (A > 1) of the symbols L and A (Gutman (13]). The i-th
symbol is L if the i-th hexagon is of the mode L; or Ly. The i-th symbol is
A if the i-th hexagon is of the mode A;. The definition of L;, L3, and A;
modes of hexagons is clear from Fig.3.
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For instance, the LA-sequence of the benzenoid chain in Fig. 2 is
LLLALLALLLAALL or, in the abbreviated form L3AL?AL3A%L2

Each perfect matching of a benzenoid system (if any exsists) represents a
Kekule structure of the corresponding benzenoid hydrocarbon. The enumer-
ation of Kekule structures of benzenoid hydrocarbons is important because
the stability and many other properties of these hydrocarbons have been
found to correlate with the number of their Kekule structures (K number).

It is well known that the K number of a benzenoid chain is entirely deter-
mined by its LA-sequence, no matter which way the kinks go ([2,12,14]). Bal-
aban and Tomescu [2] coined the term isoarithmicity for this phenomenon.
For example, the three benzenoid chains in Fig. 4 are isoarithmic, hence,
all three have the same K number.

Fig. 4
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The classical paper of Gordon and Davison [12] contains a general algo-
rithm for the enumeration of Kekule structures (K numbers) of benzenoid
chains and branched catacondensed benzenoids (see also [24]). Cyvin [7]
gave an alternative derivation for the case of unbranched chains. This case
was revisited by Cyvin and Gutman [9], who produced a useful modification
of the Gordon and Davison algorithm. Tosi¢ [20] gave an improved algorithm
of time complexity O(n) for calculating the number of Kekule structures of
an arbitrary benzenoid chain composed from n linearly condensed segments.

The identification of the number of Kekule structures for a zigzag chain
with the Fibonacci numbers was mentioned already by Gordon and Davison
[12]. The explicit formula corresponding to Binet’s formula was first given
by Yen {25] and independently by Cvetkovic and Gutman [6]. Cyvin [8] re-
derived the connection between Fiboncci numbers and the number of Kekule
structures for zigzag chains, and supplemented the treatment by group-
theoretical considerations of symmetry. A treatise on three connections
betwen Fibonacci numbers and Kekule structures is due to Balaban and
Tomescu [4]; see also Hosoya [16].

Balaban and Tomescu [2] elaborated a procedure for producing algebraic
formulas for the K number of an arbitrary catacondensed benzenoid. Tosic
and Bodroza [21, 22] gave two different explicit formulas for the K number
of an arbitrary benzenoid chain.

Many other papers have apperaed on the problem of finding the ”Kekule
structure count” for hydrocarbons. We must mention here also Trinajstic
~ [24], Hosoya and Yamaguchi [17] and Sachs [19]. A whole recent book [10]
is devoted to Kekule structures in benzenoid hydrocarbons.

We denote by < z,, 3, ..., £, > the class of isoarithmic benzenoid chains
with the LA-sequence

(1) L AL AL AL* AL,

wheren > 1,and 27 > 1, 2, > 1, 2; > 0,fort =2,3,...,n — 1.
Figure 2 shows a < 3,2,3,0,2 >.

It is easy to see that each benzenoid chain can be represented in this
form.

We see that a benzenoid chain < ,%2,..2, > has n — 1 A mode
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hexagons (kinks) each of them separating two linear segments consisting
entirely of L mode hexagons.

Clearly, the number of hexagons of benzenoids chains with the LA-
sequence (1) is h = zq, +22, +...,+, 2o+, n — 1.

We denote by K,, < z1,%3,...,2, > the number of Kekule structures of
the chain < zq,24,...,2, > .

Obviously, K, < 21, ...,2n >= K, < Ty, ..., T1 > .

Let F; be the i-th Fibonacci number, defined as follows:
Fo=0, i =1;F=Fq+ Fg.,, for k> 2.

|z] denotes the greates integer > z.

For all other definitions see [10] .

2. Recurence relation and algebraic exspression
for K, < zy,...,zn >

It is easy to deduce the K formula for a single linear chain (polyacene) of z;
hexagons, say < z1 > (see [12] and [10]):

(2) Ki<zi>=1+ 2.

We define

(3) Ko = 1.

It may be interpreted as the number of Kekule structures for "no hexa-
gons”.

Theorem 1. If n > 2 then for arbitrary z; > 1, z, > 1, z; > 0,(1 =
2,...,n — 1), the following recurrence relation holds:

(4) K, <z, .yTpo1,2, >
= (IL‘n + ]-)Kn—l < TlyeryTp—1 > +K, 5 < TyeenyTyp_g > .
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Proof. Let H be the last kink (A mode hexagon) of < zi,...,z, > and u
and v be the vertices belonging only to hexagon H (Fig. 5). We apply the
method of fragmentation [18,10] by attacking the bond uv (Fig. 5).

Every perfect matching (Kekule structure) containing the double bond
uv does not contain any other edge belonging only to H. The rest of such
a perfect matching will be the perfect matching of the graph consisting of
two components: < z, > and < &i,...,2,—1 > (Fig. 5a). The number of
such perfect matchings is K; < z,, > K,_1 < 21,...,Zn—1 >, i.e., according
to (2),

(5) (:vn + I)I(n_l < Tyyeypay > .
v
; @
X
n
*n-2 -1
Fig. 5a

On the other hand, each perfect matching not containing uv (uv is a
single bond in the corresponding Kekule structure) must contain all the
double bonds indicated in Fig. 5b. The rest of such a perfect matching will
be a perfect matching of < z1, 3, ...,Zn—2 > and the number of such perfect
matchings is

(6) . K, 2 < Tlyeeypn_2 > .
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The recurrence relation (4) follows from (5) and (6).

u @

b ¢
n

n-2 n-1

Fig. 5b

Theorem 2. Letzy > 1,2z, > 1;2; >0 fori=2,....,n—1. Then

I('n < Z1y ey Tn—1,Tn >= Fn+l+
+ > Foyri Fopeiy_ - Fiymi) Fiy 24,075,
0<iy <o <ig <10,
1<k<n

(7)

Proof. According to (2), (3) and (4), K, < z1,...,2, > is, obviously, a
polynomal of the form
K, <zi,.,2, >= cg + Z Cr (81, oy k) Tig oo Ty -
0<e1 <. <1 <1,
1<k<n
Theorem 2 follows from the following two lemmas.
Lemma 3.

(8) en = Faopa.

Lemma 4.
(9) enlt1y e tk) = Fupr—ig Fijmig_y - Fip—iy £y -
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Both lemmas can be proved by induction.
Proof of Lemma 3. According to (3) and (2), ¢ =1=Fj,and ¢? =1 = F,.
Suppose that ¢2_, = F,_1 and ¢2_, = F,. Then, according to (4), 2 =
c?z—l + C’I(’)L-—Z = Fn + Fn—l = Fn+1.
Proof of Lemma 4. The statement can be easyly checked for Ky = 1, K; <
zy >= 1+ 23, and also for Ky < 21, 23 >= (a2 + 1)1+ 21)+ 1 =
2+ 1+ 22 + z12,. Suppose that

Cn—l(zl, -"77’k) - Fn—ikFik—ik_l---Eg—il Fiu

for
<y <..<ix<n—-1,1<k<n-1,
and
Cn—2(t1ydp) = Fooq—i Fyy iy Fipiy B3y
for

0<i1<...<ixg<n-2,1<k<n-2

Consider now ¢, (%1, ...,4), where 0 < 43 < ... < <nand 1 <k < n.

If ¢x = n, then, according to (4), cp(t1, -y tk—1,1) = Cne1(%1, .1y tk=1),
i.e., by induction hypothesis,
CTL(?:17 "‘7ik—17ik) = Fn—‘ik_l Elc—l —'ik_g"'EQ——‘i]E =
= n+1—nFn—ik_1Ek—rik—z“'Fiz—ilﬂ'x'

(We used the fact that Frp1-n = F1 = 1).
If i = n — 1 then, according to (4),

en(1y ey tk—1, % — 1) = en1(31, oory th—1, 1 — 1),
i.e., by induction hypothesis,
en(its ooy ikt = 1) = Fo(neyFact—ip_y - Fiyiy Fiy =
=RF i o Fyii Fyy = bR By B =
= Flng1y—(n-1) Fn—1—-ij_y - Fiy—iy F5; -

(We used the fact that F(n+1)—(n—1) = Fz = F1 = Fn—(n—l) = 1)
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If i < m — 1, then, according to (4)
Cn(i1y ey thm15 0k ) = Cpe1(%15 oy Thm1, Bk) + C2(81, ooy Tty Bk ),
i.e., by induction hypothesis,
(i1, ey ip) =
=F i Fpip o Fopin By + B Fiy iy - Fip i By =
= (Fraiy + Faci—i ) Fi—ip_y --Fiy—iy Fiy = Fagr—ip Fip—iy_y - Fiyeiy Fiy -

So, in each case, we obtain (9). Now, the proof of Theorem 2 follows
from (8) and (9).

3. Some relations involving different formulas of
K numbers

In [21] a benzenoid chain L(z,,...,%,) is defined as the chain with the LA-
sequence
Lo AL® 2 A AL 172 ALY,
where z; > 2, for1 = 1,2, ..., n.
In this case, each of n—1 kinks is considered as belonging to two adjacent

segments. So, the total number of hexagons in L(z1,...,2,) is h = 1+ 22+
etz —n+ 1.

In [21] it is proved that the number of Kekule structures of L(zy,...,2,)

is
Kn(iBl, ...,J:n_l,fbn) = (—l)nFn_g—f-
(10) + > (-—1)"‘_kF =i Fig — g1 Fiyiy Fiy—2T4, .4,
0<i) <. <ig <n,
1<k<n
Here, F_; = 1. The formula (10) was proved by using a recurrence

relation similar to (4), which also was derived in [21].

In [22] a benzenoid chain [zy,Z2,...,Z,] is defined as the chain with the

LA-sequence
Lo ALT YA AL ALY
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where z; > 1 for i = 1,2,...,n — 1 and z,, > 2. Sometimes, however, we
permit z,, = 1, taking [z, ...,2,_1, 1] to be the same chain as [z1,...,2,—1 +
1]. In this case, each kink is considered as belonging to exactly one segment.
It means that the first segment does not contain any kinks while each of
n — 1 remaining segments has exactly one kink which is the first hexagon
of that segment. So, the total number of hexagons in [z1,...,z,] is B =
Ty + 2+ ...tz

In [22] it is proved that the number of Kekule structures of [z1, ..., z,] is
(11) K1, .. z,) = 1+Zz.,-1z,-2...a:1~k,

where the sum is taken over all subsets {71,...,3} of {1,2,...,n}
1 < k < n, such that n — ix = 0 (mod 2) and i;4; — %; = 1 (mod 2), for
J=1,2,..,k—1(251 <ig < ... <ig).

It is easy to see that the number of terms in the polynomial (11)is Fpy2,
where F; is the i-th member of Fibonacci sequence.

All the three polynomials (7), (10) and (11) possess some symmetry
properties, i.e., the following statements ar true.

Theorem 3. (a) K,(z1,...,2n) = Kn(Zn,Tn_1,...21);
(b) Kplzy — 1,22, ..., zy] = Kpzn — 1,201, .., 21];
() Kp < T1yeey T >= Kp < Tpy ey 1 > .

Proof. Yollows from the fact that in each of the three cases, both the left-
hand and the right-hand exspressions are equal to the number of perfect
matchings of the seme graph. Namely, the order of the segments of a chain
can be taken in two ways.

Having in mind the definitions of L(z4,...,24), [21,...,25] and < zq, ...,
z, >, it is easy to establish the following relationship for the polynomials
(7), (10) and (11).

Theorem 4. Letn > 2. Then
(12) (a) Kn(Z1,22y ey Tne1,Zn) = Kp[z1 — 1,20 — 1, .., 201 — 1,24),
forz; >2;1=1,2,...,n;

(13p) Kn(z1,22y 0y Tn-1,Zn) = Kn <21 — 1,22~ 2,..,Zpq — 2,211 >
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forz; > 2, 1=1,2,...,n;
(14)(c) Kp[z1, @2, -y Tp=1,2pn] = Kp < 1,22 — 1, .., 8p1 — 2,2, — 1 >

forz, >2;2;,>1;1=1,2,...,n—1.

4. Some identities involving Fibonacci numbers

Now we are going to derive some identities involving Fibonacci numbers,
using the formulae (7), (10), (11), the relations (12), (13), (14) and some
previously known results.

Consider first the benzenoid chain with n segments of the same lenght m.
We shall denote it by < m,m,...,m >,. According to the notation adopted
in [10], this chain is denoted by W”(m +2,n+4 1). It was proved by Bergan
et all [5] that the number of Kekule structures of W”(m + 2,n+ 1) is

K,<m,...m>=

(mA14/ (A1) 2+ )™ — (m 41—/ (m+1)2+4)"H!

2n+ly /(m+1)2+4

The right-hand side of the last formula can be transformed so that the
last equation can be written in the form

K, <m,..m>=

(15) 9 In/2] 4 &
] kzzjo C(n, 2k+1)(1 4+ i 12 1)2) .

Here, C(i,7) = i!/(i}(¢ — 7)!) is a binomail coeflicient.

Oun the other hand, taking z; = z2 = ... = &, = m, we obtain from (7)
as a special case, that the number of Kekule structures of W”(m +2,n+ 1)

18
K,<m,...,m>= F,41+

(16) + > my* Fopioi Fiy—ig_y - Fig—iy Fiy
0<4 <...< <,
1<k<n
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From (15) and (16) we can obtain the following identity involving Fi-
bonacci numbers. ‘

Fn+1 + E mg ¥ Fn+1—ik Ek —tk_1 "'Eg—il El =
0<4 <...<1,<n,
(17) 1<k<n

= ;25 T O, 26+ 1)1+ )™

By further specialization, taking m = 1, from (15) and (16) we derive
the following identity

Fn+1 + E Fﬂ+l—¢'kEk—ik_l"'E2—‘i1E
0<i1 <...<1, <1,
1<k<n

(18)
L(n-1/2)]
= Y C(n, 2k + 1)2F
k=0

According to notation adopted in [10], W/(m+1, n+1) denotes the ben-
zenoid chain [m, m, ...,m] with n segments. We shall denote it by [m, ..., m],.
It was proved [2,3,4,10] that, for m > 1,

(19K (W'(m+1,n+1))= KW”(m+1, n+ 1))+ K(W”(m+ 1, n)).

Having in mind (15), one can obtain by summing

(/2]

, 2 L on 9k -1 4
(20)  Kalm,..,m]= — kE—O: —_2—k_+1—_c(n - L2R)(1+ —5)".
Now, if in (11) we put 2, = z3 = ... = 2, = m, we obtain
(n/2]
2 2n -2k -1 4
21 1 k=2 I —1. 2k) (1 k
ey k3 mt= DY Ty G L2 0 )

where the sumation in the left-hand sum of (21) is taken over all subsets
{é1,...,0} of {1,2,...,n},1 < k < n, such that » — 4 = 0 (mod 2) and
ij+1 — ’ij =1 (IIIOd 2), forj=1,2,..,k—-1 (11 <ty <y < ’Lk)
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Let us determine the number of subsets {71, ,...,ix} of {1,2,...n} satis-
fying these conditions, for given k. We map the subset {%,,...,%} into a
binary sequence of lenght »n such that j-th member of the sequence is equal
to 1 if and only if there exist an r such that i, = j. For example, {3,6,7} is
maped onto 00100110 (for n = 8).

The requested number of subsets is then equal to the number of sequences
of 0’s and 1’s of the lenght n such that there are exactly k 1’s and the total
number of 0’s following each 1 is an even number. We say such sequence to be
an acceptable sequence of the lenght n with k 1’s. For instance, 0001001100
is an acceptable sequence of the lenght 10.

An acceptable sequence can be produced in the following way. We par-
tition » —k Q’s, in blocks, each block consisting of two adjacent 0’s, only the
first block is permitted to consist of one 0. Now, k 1’s can be distributed
among blocks (excluding the begining of the sequence if the first block con-
sists of one 0) in C(k + [%J,k} ways. Namely, we have combinations of
k 1’s out of k + [25%| elements, where |252| is the number of blocks (i.e.
pairs of 0’s).

So, there are C(0+ |25%|, k) subsets {41, ..., 4} satisfying the conditions
reqested in (21).

Taking into account that C(0 + |252], 0) = 1, (21) can be written in
the form

I Ln/2

= e 2 2n — 2k + 1 4
3 ==y =" k =
(22)k=0C’(k+[ 5 |, k)ym ™ 2 %t 1 C(n, 2k)(1 + mz) ,

for m > 2.
Specialy, for m = 2, we obtain
(n/2]

23) S Clk+|(n-k)2 02 =Y -2%10@, 2k)2¢.
k=0 k=0

Note also the following identity:

(24) S Clk + |(n— 2)/k], k) = Faya.

k=0
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It follows easily by proving that total number of acceptable sequences of
the length n is Fj,49.

Indeed, if we denote by f(n) the number of acceptable sequences of the
lenght n, then, obviously, f(1) =2, (0,1), f(2) = 3 (00, 01, 11). We can
take that f(0) = 1. Now, the number of acceptable sequences of the lenght
n with the last digit 1 is f(n» — 1), and the number of those with the last
digit 0 is f(n — 2) (since, in that case the sequence must end with at least
two 0’s). It follows that f(n) = f(n—1) + f(rn—2), for n > 3. Taking into
account that the initial terms are f(1) = 2 = F3, f(2) = 3 = Fy, it follows
that f(n) = Foyz.

Consider now the benzenoid chain denoted by W(m + 1,n+ 1), m > 1,
according to the notation adopted in [10]. In our notation (see also [4])
it is denoted by L,(m + 1,..,m + 1) It means that it consists of n seg-
ments. Its LA-sequence is L™ AL™ 1 A...AL™ ' AL™) and the total number
of hexagons is A = nm + 1.

For this class, Balaban and Tomescu [8] found that
K(B) = 7 (Vm? 14 + 2)(mfZiiyny

m2+44
(Vm? 4 — 2)(m=miidyn),

Our general formula (10) (see also [12]), in the special case, z; = @3 =
.. = Ty, = m + 1, gives, for the same benzenoid system B

K(B)= (-1)"Fa-st

(25)

(26) + > (=) *Fp 1, Fiymip_y o Fiyeiy Fyy —2(m + 1)F.
0<iy<...<1g Sn,
1<k<n

We shall write exsplicitly only an identity which can be derived from (25)
and (26) in a special case. When m = 1, the formula (25) for K(B) reduces
to Fny3. If we put in (26) m = 1, then we have the following interesting
identity

Z (_l)n_k 2kF’I7.—1—‘Lk Ek—ik_l"‘Ez—il EI—Q =
(27) 0<21 <...<1x <N,
1<k<Ln

= tpypa+ (_1)n+1Fn—3-
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