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Abstract

‘We obtain some new results on the varieties having locally solvable
word problems and undecidable equational theories, which represent a
continuation of the results announced in [3}.
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We present a study of the varieties with locally solvable word problems
whose equational theories are undecidable. One example of a recursively
axiomatized variety in a finitary language having the properties listed above
is given in [3].

1. A countable chain of varieties with locally solv-

able word problems and undecidable equational
theories

We quote the result here as it will be used in the sequel.
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Theorem 1. In the language of the type (2,1,1,0), there exists a variety
with locally solvable word problem and undecidable equational theory. This
variety 15 ariomatized by the following identities

f0) = 0
-0 ~ 0 f(f(@)) ~ f(z)

2 ~ 0 flzry) = 0

(1) Ty X y-z h(0) ~ O
¢-(y-2) = (z-y)-z  hh(z)) ~ hz)

h(z) -y ~ 0

f(h(z))

hk(f(:cl)f(zg)...f(xw(k))) ~0,keN

h(z)

where X = {p(k) : k € N} is a nonrecursive recursively enumerable set of
naturals.

Proof. See [3]. O

One can easily demonstrate that any such variety has giobally undecid-
able word problem, and, furthermore, provides an example of a so-called
pseudorecursive variety (in the sense of [7]), hence unifying the previous
results of Mekler, Nelson and Shelah [5] and Wells [7].

Even though these properties of a variety might seem rather restrictive,
building upon the previous result, it turns out that they do not present a
rare "phenomenon”. Namely, the following can be proved :

Theorem 2. In the language of the type (2,1,1,0), there exists an infinite
(isomorphic to (w;<)) chain of varieties which have locally solvable word
problems and undecidable equational theory.

Proof. Let the variety defined in the statement of the previous theorem be
denoted by Vj. Let ¢,;n > 2 be the identity in {-, f,h,0} of the form :

én: fz1f(z2... f(20)...) =0

The variety whose set of definitional identities is same as the one for V7,
with the exception of f(z-y) ~ 0 being replaced by (e,), will be denoted by
V.. Obviously,

icVv,C...CV,C...
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Now, we prove that each of these inclusions is strict.

(1) Vi is a proper subvariety of V, : Let C be the algebra with the
universe {0, a, b, c}, operation A is identically equal to zero, while the tables
for € and f€ are given by:

-|0abc f

o0 0 0 0 o0
al0 0 ¢ 0 alc
b{0 ¢ 0 0 ble
c|l0 0 0 0 c|c

Clearly, the semigroup reduct of C satisfies all definitional identities of
V2 in the language consisting of - solely. It can be easily verified that the
other axioms of V; are valid in C as well. Also, note that

F(a-8)= f(e) #0,

hence, C & V3.
(2) V,, is a proper subvariety of V;,41, n > 2 : Let S be the free semi-
group over n free generators {ai,...,a,} in the semigroup variety defined

by 22 ~ 0,2y = yz,z0 ~ 0z ~ 0.

The operations fS,hS are defined in the following way:
fS(wy=w, forallwe §
AS(w) =0, for all w € §

Note that the following identity is valid in &:

fzif(zz. . f(Zng1).-.)) R T1Z2. .. Tnpa

It is rather obvious that among z,, ..., Z,, being assigned any particular
values from S, at least two of them must have a letter in common, so the
commutative law and z? ~ 0 yield

S I: f(zlf(zg . .f(23n+1) .. )) ~ 0.

In order to demonstrate that the identity

(2) fzif(z2... f(zn)...)) =0
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is not valid in S, substitute z; = a;,...z, = a,. £ S = (2), we would get
aaz...a, =0

in &, which, of course, cannot be true.

We quote here the example of the algebra used in the proof of Theorem
1, which served as a main tool in establishing the undecidability of the
equational theory of V;.

Let F be the free semigroup over the countable set of free generators
G = {a1,az,...,an, ...} in the variety V' given by :

z-0 =~ 0
2 ~ 0
(3) Ty X Y-z
z-(y-2) = (z-y) 2

and let co ¢ F be an arbitrary element. Denote F’ = F|J{oo}. Operations
®,fihon F' are defined as follows:

T- z,y € Fy
z@y:{ y z,y€Fy

0 otherwise
z zT€G
(4) f(z)=< 0 =0 or z isa word from Fy of length > 2
o0 otherwise
¢ z=0

h(z) = 0 if z = byby...by,t € X, b; € G,b; # bj(3 # j)
oo otherwise

where X is a nonrecursive set from Theorem 1.

Using F’, we proved that
Vi b h(f(o1). . f(z0)) it £ € X

Clearly, 7' € V,,, for n > 2, which yields (in the essentially same manner
as in the proof of Theorem 1) the undecidability of the equational theory of
Vo, n > 2.

The only thing that remains to be shown is that every finitely generated
free algebra in V,,,n > 2 is finite. Let F,, , denote the free algebra over m
free generators {a,,...,a,} in the variety V,, n > 2.
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Let us call the word over this set of generators of f-depth n, if it is of
the form

Flwrf(waf(ws. .. f(wn)...)))

where wy, wy,...w, are the words in F,, , involving only + and f as func-
tional symbols.

One can easily prove that any word in ¥, , has f-depth at most n — 1,
and, therefore, there are only finitely many nonequivalent (modulo laws of
the variety V,,) words of f-depth of at most n — 1.

Using the induction on the complexity of words containing - and f as
the only functional symbols, it is straightforward to check whether any such
word, modulo laws of the variety V,,, can be represented as:

wt1 ...tk,

where w belongs to the free semigroup over {ay, ..., a,, } (w can be the empty
word, as well), and ty,...t; are the words of f-depth of at most n — 1.

The finiteness of F,,, is now a simple consequence of the previously
.established facts.O

2. Word problem for discriminator varieties

Definition 1. A ternary discriminator on the set A is the function ty :
A3 — A, given by:

¢, fora=1»
ta(a,b,¢) = { a, otherwise

Definition 2. A variety V in the algebraic language L is said to be a dis-
criminator variety if there exists a term in L inducing ternary discriminator
on the universe of every subdirectly irreducible algebra in V.

The canonical way of generating discriminator varieties proceeds as fol-
lows: Let K be a universally axiomatized class of algebras in language L,
and let £; denote the language obtained by adding a new ternary functional
symbol t ¢ L to L. If A € K, let A® stand for the algebra (A;t4) in L;. Let
K' = {A': A € K}. Then, the variety generated by K%, i. e, V(K') is a
discriminator variety.
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Conversely, every discriminator variety is, up to term equivalence, of the
form V(K?*), for some uniquely determined universally axiomatizable class
of algebras K.

It can be easily shown that every algebra possessing a discriminator term,
i. e., the term inducing the ternary discriminator on it, must be simple and
having no nontrivial subalgebras. Hence, for any discriminator variety, the
classes of directly irreducible, subdirectly irreducible and simple algebras
coincide.

Some other well-known properties of discriminator varieties are listed in
the propositions which are to follow.

Theorem 3. Simple algebras in V(K), where K is a class of algebras en-
dowed with a discriminator term are precisely the members of SPy(K ),
where K denotes the class K augmented by a one-element algebra (if not
already containing one), and Py(K) denotes the class of all ultraproducts of
the members of K.

Theorem 4. Let S1,...,S, be simple algebras in a discriminator variety
V. If an algebra A is a subdirect product of S1,...,S,, then

AZS, x...x 8,

for some {i1,...,tx} C{1,...,n}.

The proofs of these facts can be found in most of the standard universal
algebraic texts, like [2].

In [4], the following theorem was proved, giving a uniform procedure of
converting the universal sentences into identities on subdirectly irreducible
algebras in any discriminator variety.

Theorem 5. Let V be a discriminator variety in the language L, with the
appropriate ternary term t(z,y,2).

(1) Every finite member of V is isomorphic to a direct product of some
subdirectly irreducible algebras from V.

(2) For every universal sentence ¢ in the language L of V one can ef-
fectively produce the identity € in L, such that

AEp &
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for every subdirectly irreducible A € V.
Proof. See [4] O

Corollary 1. For discriminator varieties, the problem of the decidability of
equational theory of V is equivalent to the problem of the decidability of the
universal theory of Vsr, where Vgr denotes the class of subdirectly irreducible
members of V. Hence, the decidability of equational theory of V yields the
decidability of universal theory of V, and, therefore, the global solvability of
the word problem.

A question which naturally arises is whether the local solvability of the
word problem would imply the decidability of the equational theory for a
discriminator variety.

Before we proceed to the construction of a counter example which will
provide a negative answer to the question raised above, we need to establish
an easy fact concerning the recursiveness of a set of formulas. The claim is
merely a simple variation of well-known Craig’s Theorem which asserts that
any recursively enumerably axiomatized theory possesses a recursive set of
axioms.

Claim 1. Every theory aziomatized by a recursively enumerable set of uni-
versal sentences has a recursive universal ariomatization.

Proof. The proof follows immediately from the standard construction used in
the proof of Craig’s Theorem and the fact that any conjunction of universal
sentences is equivalent to a universal sentence. O

Theorem 6. (Willard) There ezxists a recursively ariomatized discriminator
variety in a finitary language with the locally solvable word problem and
undecidable equational theory.

Proof. Consider the following set of universal sentences in the language
consisting of a single binary operation f.

(3) (Ve)(Vy)(f(z,y) = 2V f(z,9) ~ y)

(6) (Vo) (Vy)(f(z,9) Rz = f(y,2) = y)

(1) ~(3z0)(Fz1)(Fz2)(Fzs)( A 7i # 25 A \ f(20,2:) ~ 20)

i<y i=1
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If G = (V, E) is an undirected graph, and if the operation f@: V2V,
is defined by:
fG(.'E y):{ z, if {(E,y}GE

y, otherwise

one can easily show that the algebra Ag = (G; fC) satisfies the axioms (5)
- (7) iff every vertex of G is of a degree at most two.

The converse holds as well, i. e. to any model A = (4, fA) of these
axioms the undirected graph G4 = (A, E) can be assigned, where

{z,y} € Eiff fA(:v,y) = z.

Let C,, denote the cyclic graph with n vertices and edges, and let X be a
recursively enumerable, nonrecursive set, such that 1 ¢ X. Let (E,),n € X
stand for the universal sentence

(Ern): ~(3z1)(3z3) .. .(3:1:”)[/\ zi % ;A\ /—\ f(zi,2ig1) = T Af(Zn, 21) ® 21)-

1£7 i=1

Intuitively, (E,) forbids the existence of C, as a subgraph. According to
the described procedure of generating discriminator varieties, we add a new
ternary functional symbol ¢ to £, thereby obtaining £;. Let (T") denote the
the universal sentence defining the ternary discriminator

(T): (V2)(Vy)(Vz)(z = y = t(z,y,2) 2z Az ¢y => t(z,y,2) R ).

Let K be the class of algebras in £; satisfying (5) - (7), (T) and (E,),n €
X. This axiomatization is recursively enumerable, and, by Claim 1, & has
a recursive set of universal axioms, which will be denoted by ®. We have
seen (Theorem 5), that there exists a uniform way to convert a universal
sentence % into an identity 7(%), such that

K E¢iff V(K) | 7(¢).

Consider the set of identities 7(®) = {r(¢) : ¢ € ®}. 7(®) is an equational
basis for V(K), and the thing that is yet to be established is that 7(®) is
indeed recursive. (In terms of the recursion theory, ® is many-one reducible
to 7(®)). First, note that, by the construction presented in the proof of
Theorem 5 (see [4]), there are only finitely many universal sentences in L,
being transformed into any particular identity € in £;. Moreover, given
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an arbitrary identity € in £;, one can effectively recover all those universal
sentences (in the prenex normal form) ¢, ..., pk, such that

(1) =...=1(pr) = €

Hence, to decide whether the given identity ¢ belongs to 7(®), effectively
construct the appropriate ¢, ..., ¢k, and check if some of these belongs to
®. Therefore, 7(®) is a recursive set of the equational axioms for V(K).

V(K) is locally finite, thereby having the locally solvable word problem.
It remains to be shown that the equational theory of V is undecidable. It
suffices to prove, again by Theorem 5, that the universal theory of X is
undecidable. Let (Eg), & € w be the universal sentence

k—1
(Er): ~(3z1)(3z2). ..(EIzk)[/\ T; % ;A /\ f(zi,zig1) = zihf(zg, 21) = 21].
i%5 i=1

We claim :
KE(E)iffke X.

The implication (<==) is obvious.

(=) Let G = (V, E) be a graph, which is a disjoint union of Cp,,m ¢ X.
Clearly, the corresponding algebra A% belongs to K, so, if (E%) is valid in
K, this would imply £ € X.

The established equivalence entails the undecidability of the universal
theory of K. O

Discriminator varieties are only a part of a wider class of EDPC varieties,
arising in the algebraization of different logical systems, and thoroughly
studied in [1].

Corollary 2. There ezists a recursively based EDPC variety in a finitary
language having locally solvable word problem and undecidable equational
theory.

This result rules out the possibility of obtaining the converse of the
following result, due to Blok and Pigozzi:

Theorem 7. (Blok, Pigozzi [1]) Let V be an EDPC variety having the de-
cidable equational theory. Then the local word problem for V is decidable.
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