Novi SAD J. MATH. 135
VoL. 26, No. 1, 1996, 135-153

AN OBJECT-ORIENTED Hypertext SHELL

Mirjana Ivanovié
Institute of Mathematics, Faculty of Science, University of Novi Sad
Trg Dositeja Obradovica 4, 21000 Novi Sad, Yugoslavia
e-mail:mira@unsim.ns.ac.yu

Abstract

A Hypertext shell is presented. It is a common shell which can
be used in different fields and applications. The shell has been im-
plemented using a specialized object-oriented programming language.
Some advantages of this approach have been discussed.

AMS Mathematics Subject Classification (1991): 68N15
Key words and phrases: object orientation, Hypertext

1. Introduction

Fast development of methods and techniques in different fields of com-
puter science determines the appearance of a great number of integrated
multimedia systems for representation and presentation of information and
knowledge. During the last several years, different concepts and directions of
development systems for the representation and presentation of information
can be distinguished. Most of these systems, however, possess the following
basic elements (according to [12] and [8]):

¢ Available knowledge (information, data) - a set of objects and elements
of real world domain, which have to be described and represented in a sys-
tem. Information is easier represented if it is categorized and divided in
small semantic entireties.

136 Mirjana Ivanovié

e Common sense, supplementary knowledge - additional explanations or
supplement basic descriptions of the system domain.

e Representation formalism - basic and supplementary information and
knowledge should be represented in an appropriate way. The system has to
possess the formalism for suitable representation of information.

e Presentation mechanisms - represented information and knowledge can
be used in different ways during the process of presentation. Different mech-
anisms have to support presentation in an adequate way.

e Feed-back - during the process of presentation, the system, in some
instances, expects users’ answers or reactions. The feed-back accepts them,
converts them into appropriate actions and sends them to the system for
further processing.!

The data which should be represented in a system for representation
and presentation of data are usually complex. Thus different ways of mul-
timedia representation like: text, picture, animation, sound, and so on are
required. In modern systems, the data are too complex to be modelled with
traditional database management systems (DBMS) and programming lan-
guages. The languages that come closest to providing the tools needed for a
comprehensive systems fall under the category of object-oriented languages.

Programming of a system of this kind should usually have the following
characteristics [6]:

o The object-oriented approach to data modeling and programming sys-
tem.

e Persistent data objects should appear to the programmer no differently
then transient objects do.

e The user should be able to create persistent data objects, copy them
and use them in other situations.

e The programmer must be able to build and specify behavior for highly
connected networks of objects, i.e. possibly arbitrary graphs of objects.

e There is no good reason to invent new programming language to do
these things if there is one that comes near to providing the necessary se-

In the rest of the paper we will use term data to denote information, knowledge, as
well as data.

An object oriented Hypertext shell ... 137

mantics.

Hypertext systems make a wide group of multimedia systems for repre-
sentation and presentation of data from real world domain. On the basis
of the available literature ([6], [11], [9], [3], [7]) and implemented Hypertext
products, it can be noticed that:

e Hypertext systems are usually devoted to a special, concrete field,

e in the case that they use a programming language it is, usually, difficult
(special language for picture management, special logical forms, languages
based on the first order predicate calculus, ...) and only highly trained
programmers can use them,

e the users can neither exténd, nor modify existing system, nor build
their own system(s).

The main idea explained in this paper is the possibility to the end-user
to build, use, and extend Hypertext easily, clearly, and efficiently. For that
reason an object-oriented Hypertext shell is proposed. It is based on an
original, specialized object oriented programming language, which can be
used by any non-computer professional. According to the main purpose of
the language, it could not be an extension of some existing language, and it
has to be designed as a brand new, highly specialized language Less.

In the following sections we describe the basic concept of Hypertext shell,
basic structures and elements of Less language which are used to create
Hypertext shell, and finally, an application of the proposed Hypertext shell.

2. Basic concept of Hypertext

Generally, Hypertext is a software tool for acquisition, storing, retrieval
and presentation of data with references. Specifically, Hypertext can be
defined as a data structure for representation of data, which includes a set
of different tools for data maintenance and presentation. At its most basic
level, Hypertext is a DBMS that enables connecting screens full of different
data using associative links. At its most sophisticated level, Hypertext is a
software environment for collaborative work, communication and knowledge

138 Mirjana Ivanovié

acquisition [4]. The basic elements of every Hypertext, according to [5] are:

¢ Database. Database is a set of nodes with recorded data, methods of
data recording and data access.

o Scheme of node links. Links connect the nodes into a semantic entirety
and represent the way of moving through a Hypertext network of nodes.
Every node is a source of at least one link with other Hypertext nodes.

e Interface. Interface supports visual presentation of data from nodes.
It also enables simple movements from a node to some of the nodes directly
connected with it.

Typically, three types of Hypertext that exist are:
¢ problem-resolving systems,
e on-line browsing systems,

¢ multi-purpose systems.

The Hypertext shell suggested in this paper enables implementation of
different Hypertext applications. It is a general shell which can be applied
in different fields and for different purposes. Filling in the Hypertext shell
with specific contents and data from real world domains, a concrete Hy-
pertext application is enabled. The Hypertext database consists of nodes.
Every node is used for storing different kind of data - topics, and the nodes
are interconnected according to different criteria. Links are the mode of
transportation through Hypertext network.

The most appropriate structure for the representation of Hypertext data-
base is a multi-digraph [8]. The graph nodes are Hypertext nodes - topics
and the graph edges (links) are the paths through the Hypertext. There are
three types of nodes: starting, ending and inner ones. Every Hypdrtext
application contains one starting and at least one ending node. Different
paths through the inner nodes enable different ways of moving through Hy-
pertext and looking through data. The process of presentation and using
Hypertext application consists of moving from topic to topic in somg way
and presenting data represented in the Hypertext database. ‘

An object oriented Hypertext shell ... 139

3. The environment for creating Hypertext shell

A primary goal of the Hypertext shell was to demonstrate that an inte-
grated environment, built using object-oriented methodology, is the best
environment to support hypermedia (hypertext) functionality. Similarly as
in 7], our intention was to design and implement a general tool, mostly at
a framework level, leaving only some application-specific details unresolved.

For the sake of simplicity, during the process of building a concrete Hy-
pertext application, a specific object-oriented language Less is suggested.
Wide range of end-users (non-computer professionals - like teachers, man-
agers, and so on) can use the Hypertext shell and build their own Hypertext
application. The main advantage of this Hypertext shell, in comparison
with other similar systems, is that only minimal knowledge of computer
technology is needed.

Less language has been suggested [1] as a basic environment in which
the Hypertext shell is to be designed and implemented. The kernel of Less
is a specialized object-oriented programming language which uses a lot of
properties of object-oriented methodology. It consists of basic data struc-
tures, classes for representation of data, and statements and directives for
using represented data. Less possesses mechanisms for creating new struc-
tures, filling them with data of various kinds, and using them in the process
of presentation. Less has been designed as a tool for creation of differ-
ent kinds of applications in the field of representation and presentation of
data. The usage of Less to create Hypertext offers a possibility for creat-
ing a multi-purpose Hypertext shell which can be easily adjusted to specific
needs. Furthermore, using the Hypertext shell and filling it with appropriate
contents, concrete Hypertext applications are also easily achieved.

In the rest of this section, the elements of Less needed for building the
Hypertext shell are described.

3.1 Built-in types and structures
Less has the following built-in data types (which are important for creation
of Hypertext shell) [8]:

- STRING - a character array of limited length,

- NUMBER - arbitrary numerical value,

140 Mirjana Ivanovié

- TEXT - a formatted character array of arbitrary length,
- PICTURE - a graphical image (illustration),

- ANIMATION - an animated graphical presentation,

- SOUND - a sound,

- IDENT ClassType - determines a unique name of the object the type
of which is ClassType,

- PROCEDURE - a private or public procedure, i.e. method included in a
class. A private procedure is unique for every object client of the appropriate
class. A public procedure is common for all object clients of the appropriate
class.

Apart from these (built-in) data types, Less enables defining new types
and structures by combining the existing ones.

LIST OF Type - a new structure - a list of an arbitrary number of ele-
ments which are of the same type Type.

(namey, names, - - -, name,) - a new unstructured type - enumeration of
values which belong to this type. Values of that type are denoted by the n
constant identifiers name;, name,, - --, name,,.

The language possesses a set of built-in classes. The most important
classes for the Hypertext shell are Text, Picture, Animation, Sound, and
Info which support storing different kinds of data: text, picture, animation,
sound, and all of them in the same class, respectively.

3.2 Structure of Less program

Every Less program consists of three parts.

Part for the user-defined structures, where new classes and structures
are defined.

Part for the user-defined procedures. Less implementation comes with a
standard library attached. It consists of a lot of procedures which enable and

An object oriented Hypertext shell ... 141

support the process of creation and using of a Hypertext. The end-users can
use them to build their own Hypertext without knowing any programming
language or writing their own procedures. But, the user can (if possesses
appropriate knowledge) redefine standard public procedures which partici-
pate in the process of presentation, and can define new, very specific, private
procedures which can be treated as auxiliary procedures.

The first two parts are used to define different systems for representation
and presentation of data.

Part for filling in multi-digraph, where every topic is filled in with ap--
propriate contents. This part is equivalent to the phase of representation of
data in Hypertext. In this part the user can use different kinds of directives
and statements. Before the user approaches this phase, the data from real
world domain is supposed to be split into topics, formalized and the links
between them are supposed to be established. It is the last stage in the
Hypertext creation. After that, the concrete Hypertext application is ready
for use.

4. Structure of Hypertext shell

As mentioned earlier, a multi-digraph is the most appropriate structure for
Hypertext. During the presentation of data, movements from one node
(topic) to another are realized through different paths.

There are three basic kinds of topics in Hypertext. Starting topics are
those in which the process of presentation of data from Hypertext has to
start. Ending topics are those in which the process of using Hypertext can
end. Coming to an ending topic indicates that a meaningful path through
the multi-digraph was formed, and a meaningful presentation of data from
Hypertext is over. Inner topics are visited during the process of presen-
tation. They make a path from a starting topic to the ending one. Every
inner topic is potentially an ending one, and the user of Hypertext can stop
presentation in it.

Usually, there are a lot of different paths (ways) to get some determined
ending topic from some determined starting one. Concrete path of presen-
tation depends on the user of Hypertext, on his decisions and choices of the
netx topic. In every topic the user should choose one of several possible
topics, in which presentation will be continued.

142 Mirjana Ivanovié

Four possible ways of storing and representing of data - text, picture,
animation, and sound, enable representation of different real world domains.
Each of these means of storing and representing data, has its own specialties
and can be described by a unique class. These classes can be defined and
created using standard object-oriented mechanisms:

e Class definition. New classes are built by defining new instance vari-
ables and methods. Instance variables are of primitive data types or struc-
tures. These classes do not include behavior of any existing class.

e Inheritance. New classes inherit behavior (instance variables and meth-
ods) from other classes by inheritance mechanism. Instance variables and
methods from inherited classes are directly absorbed in the new class.

o Embedding (Inclusion). New classes, also, can include other classes in
their own definition. In that case, a new name is attached to the included
class. All instance variables and methods of the included class are available
only through that new name.

Everyone of the basic classes has the following simple structure:

TypeClass = CLASS { typeVar : ARRAY OF type;
typeProc : PROCEDURE }

where

e TypeClass is one of Text, Picture, Animation, Sound, i.e. basic
classes for representation of basic types of data in Hypertext.

e typeVar is one of texts, pictures, anims, sounds i.e. an instance
variable which represents a list of elements for storing of different pieces of
text, picture, animation or/and sound.

e type is one of TEXT, PICTURE, ANIMATION, SOUND, i.e. a basic type of
data which can be stored in a Hypertext node.

e typeProc is one of interText, interPict, interAnim, interSound,
i.e. a procedure which supports the process of presentation of special data
type from topics.

Global class for storing all types of data is the class Info, in which classes
Text, Picture, Animation and Sound are included.

An object oriented Hypertext shell ... 143

Info = CLASS { ident : STRING;
key : LIST OF STRING;
tex : CLASS Text;
pic : CLASS Picture;
ani : CLASS Animation;
sou : CLASS Sound;
interAll : PROCEDURE }

e ident - is a unique identification for every object of the type Info,
¢ key - is a list of key-words associated with the stored data.

e tex, pic, ani, sou - are included classes for storing different kinds
of data.

e interAll - is a global procedure which specifies and supports the way
of presenting data stored in Hypertext.

Multi-digraph, which is a framework for Hypertext shell, can be defined
as a separate class. Class HTS specifies and determines the structure of
multi-digraph in the Hypertext shell. A particular Hypertext application is
an object of HTS class.

HTS = CLASS { ident : STRING;
topHTS : LIST OF HTTopic;
startHTS : LIST OF IDENT HTTopic;
stopHTS : LIST OF IDENT HTTopic;
trackHTS : LIST OF IDENT HTTopic;
currHTS : IDENT HTTopic;
interHTS : PROCEDURE }
L
e ident - is a unique identifier of an HTS object.
e topHTS - is a list of topics constituting a database of -Hypertext, i.e. a
network of nodes. Every topic is an object of HTTopic class.

e startHTS (stopHTS) - is a list of unique identifiers of topics which are
starting (ending) ones.

¢ trackHTS - is a list of topics identifications which were visited during
the process of using Hypertext. They are chronologically ordered according
to the appearance in the path. It is used when a skip to the previous node

144 ' Mirjana Ivanovié

is needed.

e currHTS - during the usage of Hypertext we are always in one of the
topics. currHTS contains the unique identifier of the current topic.

e interHTS - is a procedure which initializes presentation, supports the
whole process of presentation, and ends it. This procedure is activated at
the beginning of using Hypertext, it offers user a set of starting topics and
expects him to choose a topic as a starting one. Then, it calls an appropriate
procedure for data presentation from topics and guides the presentation until
the end.

Every topic is an object of a class which has been defined as HTTopic
class. HTTopic includes the basic class Info for representation of different
kind of data.

HTTopic = CLASS { ident : STRING;
CLASS Info EXCL ident;
defaHT : NUMBER;
path : LIST OF IDENT HTTopic;
ansHT : PUBLIC PROCEDURE;
typeHT : (START,OBLEND,INNER) }

e ident - is a unique identifier for every object of type HTTopic.

e HTTopic inherits the basic class Info (without ident) for representa-
tion of data.

e defaHT - is the ordinal number of a key-word associated to the node
where presentation will be continued by default.

e path - is a list of unique identifiers. To every key-word in the list (key)
there is a topic in which presentation will be continued (if that key-word is
chosen in current stage of presentation).

¢ ansHT - is a global procedure which should accept the user’s "answer”,
i.e. identify the object which corresponds to chosen key-word (or return the
default key-word).)

e typeHT - determines type of a node (starting, ending or inner). Every
node is also potentially ending if the corresponding list of key-words con-
tains predefined key-word END.

An object oriented Hypertext shell ... 145

The Hypertext’s nodes, which are represented by HTTopic class, are
typed nodes. They possess a unique identifier which uniquely determines
every node. Connections (links) between the node and other nodes are
specified by a path list. For every key-word in the topic, there is an appro-
priate topic name (unique identifier) in the list path. When a key-word is
chosen during the usage of Hypertext, presentation is continued in the topic
which is joined with the chosen key-word. A set of topics with joined path
lists determines the Hypertext multi-digraph, e.i. the set of nodes and their
links. The proposed classes make a multi-purpose Hypertext shell, which
can be used for implementation of the different Hypertext applications. It
defines simple mechanisms for creating, filling, in and using Hypertext in
different areas.

5. An application of the Hypertext shell

As an example of using proposed Hypertext shell, we will give a small geo-
graphical Hypertext with fourteen topics (see fig. 1).

Node 14 is the obligatory ending node. When one reaches that node,
it is not possible to move to another Hypertext node any more. There are
several topics which can be chosen as starting nodes. If the user of Hyper-
text wants to use Hypertext without affecting the process of presentation
(without choosing the key-word and the next topic), there is an appropriate
default path for each starting node. This Hypertext application is a general
form for the whole range of Hypertext applications which contain essential
data of a country.

An object oriented Hypertext shell ... 147

Concise descriptions of multi-digraph nodes are given.

1 (starting) - (ident.) basic data

- (key-words) continent history, country history, economy, demo-
graphics, manufacture goods, agricultural products, neighbors

- (text) basic data about country

- (picture) continent map with the country emphasized
- (animation) flag lifting

- (sound) national anthem

- (default) demographics

2 (starting) - (ident.) country history
- (key-words) continent history, basic data, culture
- (text) country history with key events
- (picture) set of country maps through history

- (default) culture

3 (starting) - (ident.) neighbors

- (key-words) continent history, basic data, country history, demo-
graphics, economy

- (text) basic data about neighbors

- (picture) part of continent map with the country and neighbors
emphasized

- (default) economy

4 (inner) - (ident.) continent history
- (key-words) country history, basic data
- (text) basic data about continent history
- (picture) continent map through history

- (default) neighbors

5 (inner) - (ident.) demographics

- (key-words) education, economy, health statistics

148 Mirjana Ivanovié

- (text) popuia.tion 1900-now, population growth, density doubling
time, urbanization

- (picture) several charts which are connected with text

- (default) economy

All other nodes have similar contents and only their identifications are
given in this paper.

6 (inner) - (ident.) economy

7 (inner) - (ident.) mining and quarrying

8 (inner) - (ident.) agricultural products

9 (inner) - (ident.) manufactured goods

10 (inner) - (ident.) health statistics

11 (inner) - (ident.) education

12 (inner) - (ident.) culture

13 (inner) - (ident.) energy

14 (ending) - (ident.) perspectives

The proposed Hypertext can be simply filled in with appropriate content,
using Less language.

It can be noticed that from some nodes (6,11,13) a link leads to the
obligatory ending node. But, as every node is potentially an ending node,
there is a link (— >) from every node to the ending one. The default paths
from starting nodes are:

- for basic data (1s) - demographics (5), economy (6), agricultural prod-
ucts (8), health statistics (10),

- for country history (2s) - culture (12), education (11), manufactured
goods (9), mining and quarrying (7),

- for neighbors (3s) - economy (6), manufactured goods (9), mining and
quarrying (7), energy (13), perspectives (14).

An object oriented Hypertext shell . .. 149

Using the proposed structure of Less program (in 3.2.), a global program
for described Hypertext is given. First two parts of the program are the Hy-
pertext shell, while the third part is concerned with a particular Hypertext
application. It enables filling Hypertext nodes with appropriate content and
establishing links between the nodes.

PART CLASSES (* definition of necessary classes *)
HTTopic = CLASS { ... } HTS = CLASS { ... }

PART PROCEDURES

(* definition or redefinition of necessary procedures *)
PROCEDURE inter_HTS(HyTx : IDENT HTS);

(* supports the process of presentation *)

BEGIN

First (&HyTx.startHTS, memst) ;

WHILE NOT EndOfList(&HyTx.startHTS) DO
WriteStr(memst); WriteLn; Next(&HyTx.startHTS,memst);

END;

ReadAns(&HyTx.currHTS); Choice = EMPTY;

WHILE &HyTx.currHTS.typeHT <> DBLEND AND Choice <> END DO
&HyTx.currHTS.interAll; &HyTx.currHTS.ansHT;
&HyTx.currHTS = Choice;

END;

END inter_HTS;
PROCEDURE InterALL(HyTx : IDENT HTS);
(* proc. for synchronizing display of all data from the topic *)
BEGIN (* display of textual data from the current topic *)
First (&HyTx.currHTS.tex,T);
WHILE NOT EndOfList(T) DO (* format it *)
Display_TXT(T);
(* hold it on the screen for some time *)
Next (§HyTx.currHTS.tex,T);
(* take the next text for display *)
END;
(* similar pieces of the code for other types of data *)
END InterAll;
PROCEDURE AnsHT;
(* procedure for acceptance of answer or key-word *)
BEGIN

150 Mirjana Ivanovié

WHILE True DO
ReadAns(Choice);
IF string is read THEN
nk = number_of_key_word;
Choice = paHT[nk];
IF key-word has been chosen THEN
RETURN
END;
ELSE (* take the default key-word *)
Choice = paHT[defaHT];
END
END;
END AnsHT;

(* £ill in Hypertext shell e.i. forming Hypertext application *)
START _
(* Hypertext application with unique identifier COUNTRY *)
AssignOb(HTS, ’COUNTRY’);
(* £filling in Hypertext with the appropriate content *)
{ topHTS : AssignList(TopicsC0);
(* TopicsCO is the name of the list of topics *)
startHTS : AssignMul (IDENT HTTopic, startCO,(’basic
data’,’country history’,’neighbors’));
stopHTS : AssignMul(IDENT HTTopic, stopCO, (’perspectives’));
currHTS : EMPTY; :
interHTS : Interpret(interHTS) };
(* making the first object in Hypertext *)
AssignOb(HTTopic, ’basic data’);
(* filling it with appropriate content *)
{ key : AssignMul(STRING,,(’continent history’, ’country

history’, ’economy’, ’demographics’, ’manufacture
goods’, ’agricultural products’, ’neighbors’, 'END’));
tex : AssignTPAS(Text ... EndText);
pic : ani : sou :

interte : Interpret(DisplayTXT);

interAll : Interpret(interALL);

defaHT : AssNo(demographics);

path : AssignMul(IDENT HTTopic,,(’continent history’,
’country history’, ’economy’, ’demographics’,

An object oriented Hypertext shell ... 151

‘manufacture goods’, ’agricultural products’,
v ‘neighbors’, ’END’));

ansHT : Interpret(ansHT);

typeHT : START };
(* adding of the first object in the multi- dlgraph *)
AddLast($TopicsCO,’basic data’);
(* making of the second object in Hypertext *)
Assign0b(HTTopic, ’country history?’);
(* £illing it in with appropriate content *)
(* adding of the second object in the multi-digraph *)
AddLast($TopicsC0,’country history’);

(* making and filling in others objects of multi-digraph *)
END.

There is another way of filling in Hypertext topics. In that way, all the
necessary data must be prepared and stored in files. It does not influence

the essence of design and implementation of Hypertext shell using Less, and
will not be considered here.

6. Conclusion

The main goal of our research was to develop an object-oriented language
suitable for creating and using different systems for representation and pre-
sentation of data (Hypertext, Authoring systems, ...). Lesslanguage serves
as a "standard” for such applications and is a good tool for creating different
kinds of systems.

By defining new classes suitable for a special kind of systems (in our
example Hypertext) and developing various groups of procedures, we get a
powerful shell for different specialized systems which belong to that group.

Classes and procedures for Hypertext shell constitute the first two parts
of a Less program. By changing only the third part of the program (filling
in the structure), different Hypertext applications are easily achieved.

The usage of Less in creating Hypertext offers a possibility for creating
multipurpose Hypertexts which can be easily adjusted to specific needs. Fur-

152 Mirjana Ivanovié

thermore, concrete Hypertext applications are also easily achieved, although
not interactively.

The shell is easy to use, and a wide range of end-users can create and
use their own Hypertext application with minimal knowledge of computers
and programming languages and techniques.

References

[1] Budimac, Z. and Ivanovi¢, M., On a specialized language for infor-
mation (re)presentation, in Proceedings of I International Symposium
DECSYM ’92 (Side-Antalia, Turkey), 1992, 175-187.

[2] Carando, P., SHADOW - fusing Hypertext with AI, IEEE Expert, Win-
ter 1989, pp. 65-78.

[3] Feiner, S.K. and McKeown, K.R., Automating the generation of coor-
dinated multimedia explanations, IEEE Computer, October 1991, pp.
33-41.

[4] Fiderio, J., A Grand vision, BYTE, October 1988, pp. 237-244.
[5] Frisse, M., From text to Hypertext, BYTE, October 1988, pp. 247-253.

[6] Goodman, A.M., Harolick, R.M. and Shapiro L.G., Knowledge-based
computer vision, IEEE Computer, December 1989, Vol. 22, pp. 43-54.

[7] Haan, B.J., Kahn, P., Riley, V.A., Coombs, J.H. and Meyrowitz, N.K.,
IRIS hypermedia services, CACM, Vol. 35, No. 1, January 1992, pp.
36-51.

[8] Ivanovié, M., A Contribution to the Development of Programming Lan-
guages using Object-Oriented Methodology, Ph.D. thesis, University of
Novi Sad, 1992.

[9] Meghini, C., Rabitti, F. and Thanos, C., Conceptual modeling of mul-
timedia documents, IEEE Computer, October 1991, pp. 23-30.

[10] Nielsen, J., The art of navigation through Hypertext, Communication
of ACM, March 1990, pp. 297-310.

An object oriented Hypertext shell ... 153

[11] Pizano, A., Klingler, A. and Cardenos, A., Specification of spatial in-
tegrity constrains in pictorial databases, IEEE Computer, December
1989, Vol. 22, pp. 59-71.

[12] Wahlster W., Knowledge-based information presentation, CAS 90,
Dubrovnik, September 1990.

Received by the editors June 22, 1995.

