Novi Sap J. MATH. 21

Vor. (1)26, No. 2, 1996, 21-30

UNDECIDABLE VARIETIES WITH SOLVABLE
WORD PROBLEMS - II

S.Crvenkovié, I.Dolinka
Institute of Mathematics, University of Novi Sad
Trg D. Obradoviéa 4, 21000 Novi Sad, Yugoslavia

Abstract

The purpose of this paper is to present a new example of a re-
cursively based semigroup variety (of simpler type than the examples,
described in earlier papers concerning this field), having solvable local
word problem, but unsolvable equational theory.
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1. Introduction

Given an algebraic language £ and a set ¥ of identities, different decision
problems concerning ¥ may arise. Generally, one can ask if the sets of all
first—order, implicational or equational consequences of ¥ are recursive. If
so, we say that the elementary, implicational, equational theory based on X
are decidable.

For example, Abelian groups and Boolean algebras appear to have deci-
dable elementary theory. Obviously, decidability of elementary theory yields
decidability of implicational theory, and that decidability of equational the-
ory. Decidable equational theories include commutative semigroups, groups,
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lattices, etc. On the other hand, modular lattices and relation algebras have
undecidable equational theories.

An another kind of decision problems in algebra are word problems. A
presentation is a pair (G, R), where G is a set of new constant symbols,
extending £ to Lg = LUG, and R is a set of equations over L in which
no variables appear. The presentation is finite, if G and R are both finite.
The word problem for (G, R) over ¥ is solvable iff the set of equational
consequences of ¥ U R without variables is recursive, i.e. iff there is an
algorithm to decide whether any two words in the language L having no
variables are equal.

An algebra A is presented by (G, R), iff A is isomorphic to the L-reduct
of the 0-rank free algebra of the variety, generated by X U R, or equivalently
iff it is isomorphic to Fy(G)/f0gr, where V is the variety generated by X, and

fr={(P,9)[EURF p=g},

is a congruence on Fy(G). Denote such A by A = Py(G,R). Now, the
word problem for A is the word problem for (G, R).

By investigating word problems for varieties of algebras, one is concerned
with two questions:

(1) is the word problem solvable for each finitely presented algebra A =
Pv(G, R)?

(2) is there a universal algorithm which, given a finite presentation (G, R),
solves the word problem for A = Py(G, R)?

If the answer to (1) is positive, we say that V has solvable local word problem
(the word local is usually omited). If (2) has a positive answer, we say that
V has solvable global (or uniformly solvable) word problem.

One can prove that decidability of the implicational theory based on X%
and the global word problem for V = mod(X) are equivalent.

In this paper, we are going to present semigroup varieties of the types
(2,1,0) and (2,1) with solvable word problems having undecidable equational
theories (which implies the unsolvability of the global word problems).

Exémples of varieties with this property were presented earlier in the
papers of Wells [11],[12},[13], Mekler, Nelson, Shelah [9], Crvenkovié, Delié
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[3],[4] and Crvenkovié, Dolinka [5],[6]. This paper is a cotribution to the
topic. Of course, reader will immediately note that we already constructed
examples of varieties of these types in [5]. However, one may wish to con-
struct undecidable semigroup varieties having solvable word problem, but
undecidable equational theory. Recall that all earlier examples, except [5]
and [6], listed above, were semigroups with operators and/or constants.
Therefore, for some ”traditional” reasons, we give this one ”extra” example.

2. Example of a semigroup variety of the type
(2,1,0)

In the sequel, ¢ will be a primitive recursive function, X = {¢(k)|k € N}
nonrecursive recursively enumerable set with 1 ¢ X, where N = {1,2,...}.

Consider the algebraic language {-, f,0} of the type (2,1,0) and the
following identities in this language:

(1) (zy)z ~ z(y2),

(2) 2 ~ 0,

(3) z-0 =~ 0,

(4) 0-z ~ 0,

(5) . Tyzu N TZYU,

(6) £(0) 0,

(7) f(f(z) = 0,

(8) flz)y =~ 0,

9) z f(zy) 0,

(10) zyf(z) =~ 0,

(11) ef(yf(zu)) = zf(z2f(yu)),
(12) - flzyz) = 0,

(13) zf(z) =~ 0,

(14) s f(z2f (... f(@myf(21))...)) ~ f*(0), neN.

Let V, dentotes the variety generated by the identities (1)-(13). Variety V
will be its subvariety, which, except (1)—(13) satisfies also the identity (14).
Of course, the set of identities listed above is recursive.
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Note that this set of identities is, in fact, a kind of ”imitation in semi-
groups” of the groupoid variety from [6]. The unary symbol simulates non-
associativity and the brackets of groupoid terms. We are going to prove:

Theorem 2.1. Variety V has solvable word problem and undecidable equa-
tional theory.

3. Solving the word problem for V

We are going to define an algebra S = (S, -, ¢, 0) of the type (2,1,0), where S
consists of some finite sequences over Ng = NU{0} and @ — empty sequence.
We say that the sequence ay,...,a is sorted if

ay < ...< ag

holds. If the sequence aj,...,ar contains different natural numbers, the
sequence, obtained by sorting this sequence, we shall denote by

sort(ay,...,ak).
Let A be the set of sequences (a1, ...,a,) satisfying the conditions:
(1) a: # 0, ,
(2) agi#a;forl1<i<j<norl<i<j<m,
(3) the sequence ay,...,a,_; is sorted,

(4) if n = 2, then a; # a3.

Also, we put § € A.

Let B be the set which contains A as the subset, and also the following
sequences:

(bl, o,..., O,bk,O,al), where (bl, v ,bk,al) €A,
(61,0,...,0,bx,0,a1,a2), where (1,...,b,0a1,a;) € A.
Finally, define C' to be the set of sequences with 0 as the first element,

while the rest of the sequence belongs to A, and having length < 2 or it
belongs to B\ A. Now, let § = B U C. Define the unary operation ¢:

) #a) = (0,a) ifaec Ba#0,]a|<2ifac A
Y=L 0 ifa=QoraecCoracA,la]>3
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We have to define the binary operation. We are going to do it in five steps:

1. If a = 0 or b =0, the result is §.
2. Ifae (B\A)UC, then ab = 0.
3. Ifbe B\ A, then ab = 0.

4. If b € C and a has at least two elements, then ab = . If a is a singleton
and
b=(0,b1,0,...,0,bx,0,c1,...,¢pn),

where n < 2, then define ab =-(a1,0,%,...), if the conditions a; # b;,1 <
i <m, b #cn and a; # ¢ for n = 2, are fullfiled. By (b],...) we denoted
sort(by,...,bg) for n =1, or sort(by,...,bk,c1) for n = 2. If some of theese
conditions fails, define ab = 0.

5. If a,b € A, a,b# 0, the result of ab is
(a1, sort(ag,...,an,b1,...,bk_1), bx),

under the following conditions: b & {a2,...,an}, a1 &€ {b1,..., b1}, a1 #
an ifn#1,b #br if k # 1 and a; # bg if n = k = 1. Otherwise, the result
is 0.

Lemma 3.1. S € V.

Proof. We are now checking the axioms:

(1) If at least one of the sequences z,y, 2 belongs to B\ A4 or if some of
them is @ or z € C, the identity is satisfied. If y € C, the r.h.s. equals to
{, while zy # 0 only if z is a singleton, and all other conditions of 4. hold.
But then zy € B\ A, so (zy)z = . The only case remaining is z,y € A,
z,y # 0. If z € C, then automatically (zy)z = ), while yz = @ or yz € B\ 4,
in both cases z(yz) = 0. Finally, if z € A, z # 0, the only possibility when
(zy)z,z(yz) are not both @ is when they have the same value

(z17 307‘t(172, co s Ty Y1y e YRy 21500 - z'm.——l)) zm)7
which one easily checkes.
(2) The only nontrivial case is when z € A, which is easy to check.

(3),(4) By the definition of the multiplication.
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(5) Nontrivial caseis z,y,z2 € A, u € AUC. If u € A, analogously as for
(1), the only case when at least one of the sides of the identity differs from
( is when they both have the value

(21, 50Tt(T2,y - o s T Y1y en s Yky Z1ye v vy ZmyUly -y Up] )y Up)-
If u € C, neither zyz nor zzy are singletons, so zyzu = zzyu = (.
(6) ¢(0) = 0.
(7) #(z) =D or ¢(z) € C, so ¢(¢(z)) = 0.
(8) For the same reason as in (11), ¢(z)y = 0.

(9) Nontrivial case appears only when z is a singleton and ¢(zy) € C.
In that case, we have:

zp(zy) = (21)(0,21,41,...) = 0.
(10) ¢(z) = 0 or ¢(z) € C, but zy is not a singleton, and therefore
zyd(z) = 0.

(11) We have a nontrivial case when z, y, z are singletons and when u is
a singleton or u € C. In this case, it follows:

x¢(y¢(zu)) = (2)1, 07 ", 07 V2, .. ) = qu(zd)(yu)),
where u = (u;) or u = (0,uy,...), and
(v1,v2,v3,...) = sort(ys, 21, U1, .. .)-
(12) One easily checkes that either zyz € A and having length > 3,
either zyz = 0 or zyz € C.

(13) The identity holds almost trivially if ¢(z) = @ or z is not a singleton.
But if z = (z;), we have (21)(0,z,) = 0.0

It is a routine to show that all words of the free algebra Fy, over the
countable set of generators {g1,g2,- ..} are listed bellow:

1. 0, gi, 9ig;(* # 7), 9k, 9k, - - - Gk Gk, Where (k;)T, is sorted and k # k, for
all 7 > 2,

2. f(w), gif(w), where w is a word of the type 1. of length < 2 and ¢ # k,
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3. f(gk, f(... f(gx,f(w))...))), where is w of the type 1. with |w| < 2, and
its letters are not among gx,, ¢ > 2 and if |w| = 2, the first letter of w is not
Gk, - ' ’

4. gif(w'), where is w’ a word of the type 3., g; is not one of gx,’s, and if
|w| = 2, g; differs from the first letter of w.

Lemma 3.2. V has solvable word problem.

Proof. One immediately sees that all listed words are different in S, so
S 2 Fy,. Now, if we want to obtain the free algebra Fj; over a set of n
free generators, we should consider only the described sequences in which no
other number apperars but 0,1,...,n. Of course, there is only finitely many
of theese sequnces, since no number, with exception of 0, cannot ocurr more
than two times in the same sequence, and there is no two consecutive zeros.
Therefore, the free algebras F}, and FY, are finite, so the word problem of
V is solvable.O

4. Undecidability of the equational theory of V

Define a new algebra S = (51, %, ¢1,0): the set Sy we obtain from S by ex-
cluding sequences (a,,0,...,0,ax,0,a,) and (0,q,,0,...,0,a,0,a,), where
m € X. The ’star-operation’ is defined by:

[0 ifa:(al),b:(O,bl,O,...,O,bm_l,O,al),mEX
axb= .
ab otherwise

The unary operation ¢; is defined as follows: ¢1(a) = @ if a € C \ 54,
otherwise it is ¢1(a) = ¢(a).

Lemma 4.1. S; is a homomorphic image of S.

Proof. Let us define a mapping p : S — 51 by p(a) = a if a € S1, otherwise
p(a) = 0. One immediately sees that p is onto’. We are going to prove that
p is a homomorphism, i.e. that the following equalities hold for all a,b € S

p(ab) = p(a)* p(b),
p(¢(a)) = ¢1(p(a)).
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If p(b) = @ then b € S\ 51, so we have either 6 € B\ A4, ab = @ or
b € C, where the second and the last member of the sequence b are equal,
so ab = (), and the first equality is true. We have the same conclusion, if
p(a) = 0. Therefore, consider the case p(a) = a, p(b) = b, a,b € 5. If a
is not a singleton, then ab # @ only in the case, described in 5.; but then
ab € A, axb = ab = p(ab). Assume a = (a;). The case b € A is already
resolved, while the case b € B \ A4 is trivial. It remains b€ C. ff ax b # 0,
we have ab = a xb € Sy, p(ab) = ab. In the contrary, ab ¢ 51, so we have
p(ab) =0 =axb.

Let us check the second relation. If a € §7 it follows p(a) = a,
é1(p(a)) = #(a) € 51, and because of that p(¢(a)) = ¢(a), so we are done.
In the opposite case, p(a) = 0,a ¢ ;. If a € C, then ¢(a) = @, otherwise
a € B, ¢(a) = (0,a), p(¢(a)) = 0.0

So, p(S) = Si, which implies that S; satisfies (1)-(13). But, except
that, (14) is also true in this algebra. The nontrivial case to check is for the
valuation z; = (a;), with a;’s different, when we have (m € X):

10(229(. .. p(emd(21)) .. .))) € 51,

and therefore:
21 % $(@3 % 9. % Ham * B(e1)) -))) = 0.
So, we just proved:

Lemma 4.2. S; € V.

But if m ¢ X, the result of the previous expression is
(a1,0,a9,0,...,0,an,0,a;) # 0.
This implies:
S1 E z1f(z2 /(... f(@mf(21))...))) = 0 iff m € X,

i.e. we have the following

Lemma 4.3.

VI zif(e2f(.. f(emf(21))..)) = 0 iff m € X.

So, Eq(V) is undecidable.
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5. Semigroup variety of the type (2,1)

Corolary 5.1. The variety of semigroups with an operator, defined by the
following identities, has solvable word problem and undecidable equational

theory:

(zy)z = z(yz), z? =~ y?,
iy ~ yr? ~ 2? TYZU N T2YU,
f(z*) = o2, f(f(z)) = 22,
f(z)y = 22, zf(zy) ~ 2%,
zyf(z) = z?, of(yf(zu)) = zf(2f(yu)),
f(zyz) ~ 2, rf(z) ~ 72,

21 f(@2f (- [(@ o) f (@) ) & f(&2), n € N.
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