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Abstract

Three different procedures to accelerate Newton’s method are con-
sidered. All of them are based on the influence of convexity of a real
function. From these accelerations we define three iterative methods
and a family of iterations. Finally, we see which of the methods show
the fastest convergence to a solution of a nonlinear equation.
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1. Introduction

We analyse the influence of convexity of a curve y = f(z) in the velocity of
convergence for the sequence defined by Newton’s method (second order):

Tpy1 = Fan) = ¢p — ]j;((::}), n > 0. (1)

To measure the convexity of the curve y = f(z) we use the degree of loga-
rithmic convexity [11]:
flz)f"(z)

Li(z)= e (2)
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if f'(z) # 0. It is a measure of convexity at each point of the curve. Observe
that F'(z) = L¢(z), where F is defined in (1).

Taking into account the geometrical interpretation of Newton’s method
[15], we deduce that the smaller convexity of the curve y = f(z), the faster
is the convergence rate of sequence (1) to a unique solution z* of equation

f(z)=0. (3)

In particular, if y = f(z) is a line, we have z; = z*.

Three procedures of acceleration of Newton’s method are given. First one
consists of reducing directly the degree of logarithmic convexity of f. From
the function f, two functions with a lower degree of logarithmic convexity
than f are provided. In the second procedure, named global approximation,
the curve y = f(z) is approximated by the tangent line at (z*,0). Note that
lines are the curves with a lower degree of logarithmic convexity. Finally, in
the procedure called local approximation the curve y = f(z) is approximated
by means of the line y = f/(z,)(z, — 2*) in a neighbourhood of each point

(@n, f(2n))-
By these three procedures, pointwise accelerations are obtained. Conse-
quently, independient iterative processes are thus defined.

2. Influence of convexity in Newton’s method

We extend the justification of the above-mentoned ideas and complete a
study given by Herndndez in [12]. Let f be a real function defined on an
interval [a,b]. Let us assume that f satisfies the following Fourier conditions
in [a,b]: f(a) <0< f(b), f/(z) > 0 and f“(z) > 0. For other situations, it
suffices to change f(z) for f(-z),—f(z) or —f(—z). It is obvious that in
the above conditions, there exists a unique solution z* of equation (3). Set
zq € [a,b] with f(zq) > 0.

On the other hand, let g be a function satisfaying the same conditions
as fin [a,b]. Let us assume that z* is also the unique solution of g(z) = 0
in [a,d]. Let yo = zg, and consider for all n > 0 the sequence

9(yn) (4)

n :Gn:n“" .
b1 = Clvn) = vn = ey
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By the degree of logarithmic convexity of functions f and g, we will compare
the velocity of convergence of sequences (1) and (4).

When the velocity of convergence of two sequences with the same order
of convergence is compared, the problem of accessibility to the solution z* of
equation (3) appears. So, we study first this problem for Newton’s method.

Lemma 2.1. Let f satisfy the above Fourier conditions in [a,b]. Let zo €
[a,b] with f(zo) > 0 and {z,} be the sequence defined by (1). If z,_1 # z*
and ¢, = z*, then f(z) = az + b with a,b € R, for all z € (z*,7,-1).
Furthermore x4t = z* for all k € N.

Proof. From F defined in (1) we deduce that F(z) < 2* in (2*, 1), since
F is a nondecreasing function in [z*,5]. By means of Mean Value theorem,
we get

F(z) - z* = F(z) — F(z*) = F/(w)(z — z¥)

for some w € (2*,z), and then F(z) > z*. Therefore, F(z) = z* for
z € (z*,z,—1) and consequently, f(z) = az + b in (2*,2,,—1) with a,b € R.

On the other hand, it is clear that z,,1x = z* for all k¥ € N, since z* is
a fixed point of F. O

Now we compare the velocity of sequences defined in (1) and (4) with a
result given by Herndndez [12].

Theorem 2.1. Let f and g satisfy the above Fourier conditions in [a,b]
and both of them have the same solution z* in [a,b]. Let f(zg) > 0 and
g(zo) > 0 for zo € [a,b]. If Ly(z) > Lg(z) > 0 in [a,b] — {z*}, then
sequence (4) converges to x* faster than sequence (1) for yo = xo.

Notice that if we consider f(zo) < 0, we have to assure that z; < b and
y1 < b in order to guarantee that sequences (1) and (4) lie in [a,b]. Then
both sequences will be decreasing from z; and y, since that Ly(z) < Lg(z)
in [zo,2*). Therefore, with slight modifications we obtain an analogous
result to theorem 2.1.

3 2

Example 1. Let f(z) = %E ~1and g(z) = ;—6 — 1 be two functions with
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the same zero z* = 6 in 3, 10]. From (2) we obtain that

144 18

2
Li@)=3-75 p

1
T+ and Ly (z)= 5~

These functions are increasing and convex in [3, 10]. Therefore, by theorem
1.2, we have that the sequence {y,} converges to z* = 6 faster that {z,} if
Yo = Zo € [3,10] and f(zo) > 0.

On the other hand, if we choose zoq = 2 € [3,10] where f(2) < 0, then
10 > F(3) = 10 and 10 > G(3) = 7.5. Therefore, z,,y, € [6,10] for all
n > 1, see Table 1.

DU R W~ oS

Tn Yn
3.0000000000000 | 3.0000000000000
10.0000000000000 | 7.5000000000000

7.3866666666667
6.2440237430147
6.0094124974239
6.0000147350265
6.0000000000362

6.1500000000000
6.0018292682927
6.0000002787669
6.0000000000000
6.0000000000000

Table 1

Next, we extend the previous situation. The following result solves the
problem that Fourier conditions are insufficient to get convergence for New-
ton’s method when f” changes the sign in {a, b).

Theorem 2.2. Let f be a derivable enough function that satisfies f(a)f(b) <
0, f'(z) # 0 and |L¢(z)| £ M < 1 in [a,b]. Then, the iterative method de-
fined by (1) is convergent to z* for any zq € [a,b], where a < F(zg) < b.

Proof. Since F is a contractive function, it follows that |zo—2*| < |21 —2z*|.
By mathematical induction, it is easy to check that |z, — z*| < M" |z, —
z*| < |z1 — 2*| for all n € N. Besides, from z, € [a,d] it follows that
zn € [a,b] for all n € N. Now, the convergence of (1) to z* is deduced in a
similar way. a

Note that the last result allows improvement of the widely used Fourier
conditions.
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Example 2. Let us consider f(z) = —z3+3z? —2 in the interval [llo, %—g].

Note that this function has an inflexion point in [11—0, }—g]. Hence f” changes

the sign in that interval. The function defined from (2) is Ls(z) =

6(_$3j§::;62£(1_m) and it satisfies |L¢(z)| < 1 in [llo,%—g]. If we choose

zg = 1.6, then z; = 0.775 € [ILO,%?—)]. Therefore, by Theorem 2.3, the
1

sequence {z,} given by (1), converges to the solution z* =1 in [1—0, %—g—] , see
Table 2.

Tn
1.6000000000000000
0.7750000000000000
1.0079986833443050
0.9999996588133421
1.0000000000000000

= w NN = oS

Table 2

Example 3. Consider f(z) = 1 +sinz. Then Ls(z) = ——% It
is easy to check that |L¢(z)| < 1 in [-1.00297,0.634867]. We choose zg =
0.6 for theorem 2.3 and obtain that z; = —0.6899 € [-1.00297,0.634867].
Consequently, the sequence {z,} defined by (1), lies in [-1.00297,0.634867],
and converges to the solution z* = —0.5235987755982988711, see Table 3.

zn
0.60000000000000000000
-0.689950965597850666 7
-0.512972624 7150719697
-0.5235667752006047706
-0.5235667753027045709
-0.5235667755982988737
-0.5235667755982988705
-0.5235667755982988742
-0.5235667755982988711
-0.5235667755982988711

© 00 N0 Uk WP OIS

Table 3
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Note that Fourier conditions are satisfied in [-%, ], where ¢ < 0. There-
fore, we have extended the domain of inital points to apply Newton’s method.

After proving that convexity of the function f influences the rate of
convergence of Newton’s method, we get different sequences that converge
faster than Newton’s one. We call these sequences accelerations of Newton’s
iteration and they are pointwise accelerations. That is to say, we obtain
Yn+1 = G(z,) where G is defined in (4) so that y, is closer to z* than z,.
It is a consequence of the fact that we will be able to define new iterative
processes of the form z,41 = G(z,) from the function G.

3. Convex acceleration of Newton’s method by
means of direct reduction of the degree of loga-
rithmic convexity of the function

Throughout this section f and g are two increasing and convex functions
in [a,b] that satisfy [Ls(z)| > [Ly(2)| for € (z*,z0]. Let zo € [a,b] with
f(zo) > 0. We analyse two different ways to accelerate Newton’s sequence.

Firstly, we consider the function [13]

f(z)
g(z) = T3 a/(@)

where 14+ af(z) > 01in [a,b] and @ > 0. It is obvious that g(z) > 0 in (z*, b]
under the previous statements. Then we have

) = 1)
7 TFaf@r

and
f"(z)(1 + af(z)) - 20f'(z)?
(1 + ef(z))? '

As Ly(z*) = 0, there exists an zg € [a,b], where L¢(z) < 2 in (z*, zo).
Moreover, if o satisfies

gll(x) —

a < min {______U[f](:v) }
T zé{z*xo] | 2 — Lf(:b)
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where U[f](z) = ——)%, then ¢ is increasing and convex in (z*,zo] (this
function and its connection with Whittaker’s method is studied in [10]).
Otherwise

Ly(z) = Lg(z) - af(2)(2 - Ls(2))
and L¢(z) > Ly(z) > 0in (2*,20]. So, we define a uniparametric family of
accelerations of sequence (1):

WEon) _ . (o)
gl(ma,n) o fl(xa,n)
From Theorem 2.2 it follows that (5) converges to z* faster than Newton’s

sequence {z,}. Moreover (5) is a family of accelerations, since (1) and (5)
are decreasing, and y,, < o, for all @ > 0 and n € N.

Yart1 = Tan (1+af(zan), 120 (5)

Secondly, we consider the function

L@
9@)= )

introduced by Alefeld [1] to define Halley’s method as a variant of Newton’s

method. Thus )
9@ =@ (1-31,5)

(@) Ls(2)
o) = 5L (5 - 1),
Soif L(z) < 2 and Ly(z) < 3 in (2%, z0), then g is increasing and convex
in (z*,z0]. As

and

Ly(z) = —212)° (3 - 2L (@),

(Ls(z) -2
hence Ls(z) > Ly(x) > 0in (z*, zo) if and only if (Ls(z) — 2)% — L(z)(3 -
2Ls(x)) > 0. To get Ly(x) > Ly(x) in (z*,z0] it is enough to choose 2 so
that

Li(z) < % (7 ~ 2m — /(7 — 2m)? - 16)

in (z*,zo] where m = n[linb]{Lf,(a:)}. Under these assumptions, we obtain
TE[x*,

by Theorem 2.2 an acceleration of Newton’s method defined for all n > 0

by
sl S 2 |
bt = 9'(zn) " fi(zn) (2_ Lf(mn)) . (©)
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Example 4. Let us consider the function f(z) = e* + z. We see from
Table 4 that sequence {y,} defined by (6) converges to the solution z* =
—~0.5671432904097839 of equation f(z) = 0 in [-2,2]. Besides, it is an
acceleration of the sequence (1) starting from zo = 2. We obtain that

e“(e” + )
(e +1)27

14+ €%
Lf’(z): P

Li(z)= = Ls(2)=1.13534

and

1
— — —_ — 2 _ —
5 (7 2m — /(7 - 2m) 16) = 1.10306.

Thus, it is easy to check that Ly(z) < 1.10306 in R.

Tn Yn

S Lt W N~ S| 3

2.0000000000000000
0.8807970779778824
-0.0842749600983386
-0.5193066837383489
-0.5667232231976213
-0.5671432584762297
-0.5671432904097837

2.0000000000000000
-0.2070451959228786
-0.5683407447276397
-0.5671432903624338
-0.5671432904097839
-0.5671432904097839
-0.5671432904097839

Table 4

4. Global convex acceleration of Newton’s method

This acceleration procedure was introduced by Herndndez in [12]. The curve
y = f(z) is approximated by the tangent line at (z*,0), (see Fig. 1). For
that, it suffices to consider f € C?a,b] and the limited Taylor s formula of
f in a neighbourhood of z*

1) ~ fa) + P - at) + L0 o gy
Then, f'(z*)(z—z*) ~ f(z)~- f"é‘ )(.’L' —z*)?, and we consider the function
o) = 1) - T @ oy
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y=f(e*)(z - 27)

Figure 1

But this function runs into a problem: z* is an unknown value. As
our purpose is to accelerate the sequence (1), we must obtain a new value
Yn+1 = G(z,), where G is defined in (4), closer to z* than z,4;. Thereby,
we have to evaluate g and ¢’ at z,,. So we approximate

(i) f/f(x*) ~ f”(xn)’
(Tp — z*)k

—_— =1,
(zn - $n+1)'c

i) (zp —2%)% ~ (2p — Zpy1)® for & = 1,2, since lim
+ n

/s
Therefore, we consider

g(2n) ~ flan) — L En) <f($n)>2

2! f(zn)
and fon)
gl(xn) ~ f’(xn) - f”(xﬂ)f/(xn)

in order to define the sequence

S € AU €. N
Yt = I T i) T 2 () (1+1—Lf(xn))' @

To see that (8) is an acceleration of (1) [12], it is suffices to show that

L x
n|zn — ¥

0.
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e’ — b

Example 5. Given the function f(z) = , we show in Table 5 that

sequence (7) converges to the solution z* = 2.542641357773526 of f(z) =0
in [1, 4] faster than Newton’s one.

Ty Yn
3.500000000000000 | 3.500000000000000
2.839835893846803 | 2.441271065123373
2.577023717097117 | 2.542750966419476
2.543144242829421 | 2.542641357773588
2.542641466706540 | 2.542641357773526
2.542641357773532 | 2.542641357773526

(S0 UCRE I e ] ]

Table 5

5. Local convex acceleration of Newton’s method

The third acceleration procedure, that we call local approximation, consists
of approximating the curve y = f(z) by lines. When the sequence {z,}
given by (1) is obtained, for each point z, of (1) the curve y = f(z) is
approximated by the line y = f/(z,)(z — 2*) in a neighbourhood of z,, see
fig. 2.

y = fl(ana)(z—2)

Figure 2
Let us consider f € C?[a,b] and the limited Taylor’s formula

1&) ~ fe) + fane -2 + Dz )
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f'(z,)(z — 2*). Now we have to approximate g(z,)
= G(zy), where G is given in (4).

So we consider g(z) =
and ¢'(zn), to get Yni1

Taking into account (8), for z = z*:

g(:vn) ~ f(wn) + fll(llfn)(w _ wn)2

and 2
(0" = 20)? ~ (s = 22" = (5E22)
we obtain
g(zn) ~ f(zy) (1 + -;—Lf(zn)) )

On the other hand, it is obvious that ¢’(z,) = f'(z,). Therefore

- e (1 %Lf(“_)) '

Using the same argument as for sequence (7), it is proved that (9) is an
acceleration of (1).

9(zn)

~ T
g(zn) "

(9)

Ynt4l = Tn —

e -5

Example 6. Let us consider again f(z) = 2 We see from Table 6

z
that the sequence {y,} defined by (9) converges to * = 2.542641357773526
faster than (1).

Tn Yn

G W~ O3

3.500000000000000
2.839835893846803
2.577023717097117
2.543144242829421
2.542641466706540
2.542641357773532

3.500000000000000
2.659283282924826
2.543020336792808
2.542641357787998
2.542641357773526
2.542641357773526

Table 6
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6. Iterative processes obtained by means of convex
acceleration of Newton’s method

We have obtained four accelerations of Newton’s method as a consequence
of convexity of the function f. All of them have the form y,{; = G(z,),
where G is defined in (4) and, therefore, independent iterative processes may
be considered. In this section we define iterative processes, and give a first
study of the convergence according to the degree of logarithmic convexity

of f.

The acceleration (5) provides the family of iterations
f(Tam)
antl = Tan — , amn))s > 0. 1
ot = B = 5 (14 0f(zap)), 120 (10)

Let us consider the f increasing and convex in [a, b]. Denote
[J)a‘o,b] 1,f Za,0 < z*

<a,byrog>= _
T [a,xa,O] Zf Ta0 > z*

and
Ulf)() }

m<abxyo>= min —
>0 £€<a,b,Ta0> {2 — Ly(x)

Then, we have the following result that has been proved in [13].

Theorem 6.1. Let x40 € [a,b] with f(zap) > 0 and |Lf(z)|] < 2 in <
a,b, 2,0 >. If 0 < @ < m < a,b,z40 >, then the sequence given by (10)
is decreasing and converges quadratically to z*. Moreover, if 0 < a < § <
m < a,b,z40 >, the sequences {3 ,} converges to z* faster than {z,n}.

If f(zoo) <Oand b—240 > - —’lz—“i’—j under the same assumptions as
mentioned above in Theorem 6.1, we get an analogous result.

An interesting feature of the family (10) is that for a similar efficiency
index to Newton’s method, we obtain an iterative process that converges to
z* faster than Newton’s iteration.

2 ) 3
in [-3,3].
=)

Then, U[f](z) = 1and L¢(z) = ( ) Observe that the function ——II%%}L)

le

Example 7. Let us consider the function f(z) = In (2

8
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is nondecreasing in R. From Theorem 6.1 it follows that the fastest iterative

-2
method of (10) is given by a = ;i[+]f((_2§)—) = 0.390648. Therefore, the itera-
2

tive process of the family (10) where @ = 0.390648 is given by the sequence
{z0.390648,n}. From Table 7, we see that the previous sequence converges

to the solution z* = 0 of equation f(z) = 0 faster than Newton’s sequence

{:l:oyn}.

Tao,n T0.390648,n
1.500000000000000000 | 1.500000000000000000
0.806852819440054700 | 0.431442208860817500
0.190529451739077100 | 0.014114389234717540
0.009378120633087785 | 0.000011006483878148
0.000022021734024151 | 0.000000000000000000

=W N = oS

Table 7

The acceleration (6) provides the well known Halley’s method or method
of tangent hyperbolas ({1],[2],{4],6],[14],[16]):

. n 2

The global approximation procedure provides the iterate

Tpy1 = Fo(zn) = zn — 5}%%5 (1 + 1—_-1%;;—)) 3 n > 0, (12)

named Convex Acceleration of Newton’s method or Super-Halley method
((7),(9),12)).

Finally, by local approximation procedure we obtain the Chebyshev it-
eration ([3],[5]):

Smsr = Fy(2n) = o — ]{c((”;z)) (1 + %Lf(a:n)) L on>0. (13)

On the other hand, it is well-known [8] that a method given by the
expression

= Tp — f(l'n) z n
Tntl = Tn fl(il?n)H(Lf( n)), 2 07
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where H(0) = 1, H'(0) = % and |H”(0)| < oo is of third order. Therefore
(11), (12) and (13) are cubically convergent.

Now we give a convergence result depending on Ly and L for the pre-
vious three methods. Consider the function f is increasing, convex, and
derivable enough in [a, b]

Theorem 6.2. Let zg € [a,b] with f(zo) > 0 and Lp(z) <0 in [a,b].
(i) If Lf(z) < 2 in [a,b], then the sequence {z,} given by (11) is decreasing
and converges to *.

(ii) IfLs(z) < 1 in[a,b], then the sequence {x,} given by (12) is decreasing
and converges to z*.

(iii) The sequence {z,} given by (13) is decreasing and converges to z*.

Proof. Tt follows zg > 2* from f(zg) > 0. By Mean Value theorem we have
21 — 2" = F{(wo)(z0 — z¥)

for some wg € (z*, zg). Taking into account that
g

F(z) = (éffT(f()—)) (3~ 200(2))

we deduce that Fj(z) > 0 in [z*,b]. So z; > z*. Now it is easy to prove by
mathematical induction that z, > z* for all n € N.
Moreover f(z) 0
. iEn
n+l = - <0
T T ) 2 L)

for all » > 0.

Thereby, the sequence (11) is decreasing and converges to u € [a,b],
where u > z*. Making n — oo in (11), we get

gy S0 2
F(w)2 = Ly(w)

and consequently f(u) = 0. But under the above hypotheses, z* is the
unique solution of equation (3) in [a, b], therefore v = z* and (i) is proved.
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On the other hand, taking into account that

o) = e (L4(6) - L)

and 1
Fi(2) = 5L4(2) (3~ Ly (@),

the cases (ii) and (iii) are analogous to the previous one (see [12] for (ii)).
a

Note that the obtained sequences defined by (11), (12) and (13) are
increasing and converge to z* under the same assumptions of the previous
theorem but for f(z¢) < 0.

Furthermore, we deduce the same result by the Chebyshev method if
Lys(z) < 3 for z € [a,b], and Halley method if Ly(z) < 2 and Ly(z) < 2 in
[a,b]. However, to compare the rates of convergence of the three methods we
need the same assumptions to get simultaneous convergence for (11), (12),
and (13).

Theorem 6.3. Under assumtions of Theorem 6.2 and starting from the
same initial point, the rate of convergence of sequence (12) is higher than
the one of sequence (11), and the latter one is higher than for sequence (13).

Proof. Let {z,}, {yn} and {z,} be defined by (12), (13) and (14) respec-
tively. Since o = yo = 2¢ and the three sequences are decreasing, we expect
that 2z, < #, < y, for all » € N. This can be proved by mathematical
induction. Let n = 1, then

) S0 [ 2 2~ Lylzo)
y1 — 21 = Fa(zo) — Fi(wo) = f’(w(;) (2 ~ Ly(zo) 2(1-— Lff(mOO))) =9

and

_ f(mo) l 20) — 2
B f'(z0) (1+ QLf( °) 2“LJ‘(QEO)) =0

Now we assume that 2,1 < 2,7 < y,—1. Taking into account that F; and
F3 are non-increasing functions in [a, b], it is easy to show that

Un — Tn = Fa(yn-1) — Fi(2n-1) < Fo(yn-1) = Fi(yn-1) <0

Tl — 21 = F1(CL‘0) - F3($0)
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and
Tn — 2p = Fi(2p_1) — F3(2n-1) < Fi(2n-1) — F3(2p-1) €0
So, the induction is completed. a
Example 8. Consider the function f(z) = 2 — cosz. This function is

increasing and convex in [0, 7]. From (2) it follows that

(z —cosz)cosz sin

(1 + sin z)?

Li(z) = and Lyp(z)=

sinz — 1’

then Ly(z) < 1 and Ly (2) < 0in [0,5]. By Theorem 6.2 the sequences
(11), (12) and (13) converge to the solution z* = 0.7390851332151606428
of f(z) = 0in [0,F]. In Table 8 we compare convergence rates of the three

sequences.

n Zn Trn Yn

0 | 1.0000000000000000000 | 1.0000000000000000000 | 1.0000000000000000000
1 0.7412215390677832763 0.7408739950803435706 0.7404989832636941698
2 | 0.7390851348155419594 | 0.7390851338775818840 | 0.7390851334050131377
3 | 0.7390851332151606451 | 0.7390851332151606499 | 0.7390851332151606428 -
4 | 0.7390851332151606435 | 0.7390851332151606428 | 0.7390851332151606428
5 | 0.7390851332151606428 | 0.7390851332151606428 | 0.7390851332151606428

Table 8
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