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Abstract

We obtained some related fixed point theorems for three metric
spaces.
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The following fixed point theorem was proved by Nung [1].

Theorem 1. Let (X,d), (Y,p) and (Z,0) be complete metric spaces and
suppose T is a continuous mapping of X into Y, S is a continuous mapping
of Y into Z and R is a continuous mapping of Z, into X satisfying the
inequalities

d(RSTz,RSy) < cmax{d(z,RSy),d(z,R5Tz),p(y,Tz),0(Sy,5Tz)},
p(TRSy,TRz) < cmax{p(y,TRz),p(y,TRSYy),0(z,5y),d(Rz, RSy)},
0(STRz,5Tz) < cmax{o(z,8Tz),0(z,5TRz),d(z,Rz),p(Tz,TRz)}

forallz in X, y inY and z in Z, where 0 < ¢ < 1. Then RST has a

unique fized point u in X, TRS has a unique fized point v in'Y and STR
has a unique fized point w in Z. Further, Tu = v, Sv = w and Rw = u.
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The next theorem was proved in [2].

Theorem 2. Let (X,d), (Y,p) and (Z,0) be complete metric spaces. If T
ts a continuous mapping of X intoY, S is a continuous mapping of Y into
Z end R is a mapping of Z into X satisfying the inequalities
d(RSTz,RSTz") < cmax{d(z,a),d(z, RSTz),d(z', RSTz"),
p(Tz,Ta"),o(STx, ST},
cmax{p(y,y), p(y, TRSY), p(y’, TRSY"),
o(5y, Sy'),d(RSy, RSy')},
a(STRz,STRZ") < cmax{a(z,2),0(z,STRz),a(',STR?),
d(Rz,RZ),p(TRz, TR2")},
forallz,2’ in X, y,y inY and 2,2’ in Z where 0 < ¢ < 1. Then RST has

a unique fired point v in X, TRS has a unique fized point v in'Y, and STR
has a unique fized point w in Z. Further, Tu = v, Sv = w and Rw = u.

p(TRSy, TRSY')

IA

We now prove the following related fixed point theorems:

Theorem 3 Let (X,d), (Y,p) and (Z,0) be complete metric spaces and
suppose T is a mapping of X into Y, S is a mapping of Y into Z, and R is
a mapping of Z into X satisfying the inequalities

d*(RSy,RSTz) < cmax{d(z,RSy)p(y,Tx),p(y,Tz)d(x, RSTx),

(1) d(z,RSTz)o(Sy,STz),0(Sy, STx)d(x,RSy)}
p*(TRz,TRSy) < cmax{p(y,TRz)o(z,5Yy),0(z,5y)p(y, TRSY),
(2) ply, TRSy)d(Rz, RSy),d(Rz, RSy)p(y, TRz)}
0*(STz,STRz) < cmax{o(z,STz)d(z,Rz),d(z,Rz)o(z, STRZ),
(3) o(z,STRz)p(Tz,TRz),p(Tz,TRz)o(z,5Tz)}

forallz in X,y inY and 2z in Z, where 0 < ¢ < 1. If one of the mappings
R, S, T is continuous, then RST has a unique fized point u in X, TRS has a
unique fized point v in'Y, and STR has a unique fized point w in Z. Further,
Tu=v, Sv=w and Rw = u.

Proof. Let zg be an arbitrary point in X. Define the sequences {z,}, {y,}
and {z,}in X, Y and Z respectively by

Tn = (RST)H-”CO, Un = TTn_q, 2p = Syn
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forn=1,2,....

Applying inequality (2) we have

P*(YnrYns1) = p*(TRzu_1,TRSY,)

S ¢ max{p(yTH yﬂ)a(zn—l, zn), U(Zn—la Zn)ﬂ(yn, Yn+1 ),
P(yn, yn+1)d(mn—17 -'En)u d($n—1, mn)p(yn, yn)}
= cmax{a(zn—l,zn)p(yn,yn+1),p(yn,yn+1)d((xn—1,$n)}
and so
(4) p(ynayn+l) < cmax{d(xn—l,xn)aa(zn-—lazn)}-

Applying inequality (3) we have

02(zn, Znt1) = ‘02(ST:t:n_1, STRz,)
emax{o(zn, 2n)d(Tn-1,Zn), A(Tn-1,25n)0(2n, Znt1),

7 (2ny Zn41)P(Yn> Ynt1)s P(Yns Ynt1)0(2ny 2n) }
cmax{d(Tn—1,%n)0(2n, Zn+1), 7(2n;, 2041)P(Yn, Yn+1)}

IA

i

and so

0(2p, 2nt1) < cmax{d(zp_1,2n), P(Yn) Ynt+1)}
<

cmax{d(zn—-1,%n),0(2n-1,2n)}

(5)
on using inequality (4).
Applying inequality (1) we have
d*(Tp,Tny1) = d*(RSyn, RSTz,)
< Cma-x{d(xmxn)p(ymyn+1)’p(ynayn+1)d("”naxn+1)7

d(xn, $n+1)0'(zn, Zn+1)) U(zn) zn-i-l)d(zn) xn)}
= emax{p(¥n, Yn+1)8(Zn; Tny1), ATn, Trnt1)0(2n, 2n41)}

and so

d(xn) xn+1) < ¢ ma'x{p(yn) yn+1), U(zn, Zn+1)}
< Cmax{d(:vn—l,xn))‘f(zn—lazn)}

(6)

on using inequalities (4) and (5).
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It now follows easily by induction on using inequalities (4), (5) and (6)
that

d(n,Tny1) < Pmax{d(zy,22),0(21, 22)},
P(Yn> Ynt1) < P max{d(z1,22),0(21,22)},
0(2n,2n41) < ¢! max{d(z1,z2),0(21,22)}.

Since 0 < ¢ < 1, it follows that {z,}, {y.} and {z,} are Cauchy sequences
with limits u, v and w in X, Y and Z respectively.

Now suppose that S is continuous. Then lim,, .o Sy, = lim, o 2, and
50

(7) Sv = w.
Applying inequality (1) we now have
d*(RSv,zn41) = d*(RSv,RSTz,)
< emax{d(z,, RSv)p(v,Txy), p(v,Txp)d(2n, Tnt1),
d(Zp, Tpy1)o(Sv,5Tz,),0(Sv, STz, )d(z,, RSv)}.

Letting n tend to infinity, it follows on using equation (7) that d*(RSv,u) <
0 and so

(8) RSv = u.
Using equation (7), this gives us
(9) Rw = u.

Using equation (8) and inequality (2) we have
P*(Tu,yns1) = p°(TRSv,TRSy,)
cmax{p(Yn, TRSv)o(Sv,SYn), 0 (S0, SYn)p(yn, T RSyn),
P(Yn, TRSY,)d(RSv, RSy,),d(RSv, RSY.)p(yn, TRSV)}.

A

Letting n tend to infinity, it follows on using equation (8) again that p?(Tu, v)
< 0 and so
(10) Tu = v.

It now follows from equations (7), (9) and (10) that

TRSv=TRw =Tu = v,
STRw = STu= Sv=w,
RSTu = RSv = Rw = u.
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The same results of course will hold if R or T is continuous instead of §.

We now prove the uniqueness of the fixed point w. Suppose that RST
has a second fixed point u’. Then using inequality (1), we have

d(u,v) = d*(RSTu,RSTu')
< cemax{d(v,w)p(Tu, Tv), p(Tu, Tu')d(v, '),
d(v',u")o(STu, STu'), o(STu, STw')d(v', RSTu)}
= cmax{d(u,v)p(Tu,Tu'),o(STu,STu')d(u,u')},

which implies that

(11) d(u,v") < cmax{p(Tu,Tu'),o(5Tu,STv')}.

Further, using inequality (2), we have

o (Tu, Tu') = p*(TRSTu,TRSTu')
< emax{p(Tv,Tu)o(STu,STu'),oc(STu, STuw )p(Tvw', Tv'),
p(Tv', Tu')d(u,u'), d(u, v )p(Tu, Tu')}
= cmax{p(Tu, Tu)o(STu, STu'),d(u,u)p(Tu,Tu')},

which implies that
(12) o(Tu, Tu'") < emax{o(STu,STu'),d(u,u’)}.
Inequalities (11) and (12) imply that

(13) d(u, ) < co(STu, STu').

Finally, using inequality (3), we have

0*(8Tw,STu') = o*(STRSTu,STRSTY)
< cmax{o(S5Tu, ST )d(u, ), d(u, v)o(STv, STY'),
a(STv', STu)p(Tu,Tu'), p(Tu,Tv)o(STu, STu')}
= cmax{o(STu, ST )d(v',v),o(STu, STu)p(Tu, Tu')},

which implies that

(14) o(STu, STv') < e max{d(u, ), p(Tu,Tu')}.



32 R.K.Jain, A.K.Shrivastava, B.Fisher

It now follows from inequalities (12), (13) and (14) that
d(u, ') < ca(STu, STu') < ¢*o(STu, STY'),

and so u = o/, since ¢ < 1. The fixed point u of RST is therefore unique.
Similarly, it can be proved that v is the unique fixed point of TRS and w is
the unique fixed point of ST R. This completes the proof of the theorem.

Theorem 4 Let (X,d), (Y,p) and (Z,0) be complete metric spaces and
suppose T is a mapping of X into Y, S is a mapping of Y into Z, and R is
a mapping of Z into X satisfying the inequalities

d(RSy, RSTz)max{d(z,RSy),d(z, RSTz)}
(15) <eo(Sy,STz)max{o(Sy,STz),d(z,RSTz)},
p(T Rz, TRSy) max{p(y,TRz), p(y, TRSY)} |
(16) < cd(Rz, RSy) max{d(Rz, RSy),p(y, TRSy)},
o(STz,STRz)max{o(z,5Tz),0(z,STRz)}
(17) < cp(Tz,TRz) max{p(Tz,TRz),0(2,STRz)}
forallz in X, yinY and z in Z, where 0 < ¢ < 1. If one of the mappings
R, S, T is continuous, then RST has a unique fized point v in X, TRS has a

unique fized point v in'Y, and ST R has a unique fized point w in Z. Further,
Tu=v, Sv=w and Rw = u.

Proof. Let zo be an arbitrary point in X and define the sequences {z,},
{yn} and {2z,} in X, Y and Z respectively as in the proof of Theorem 2.

Applying inequality (15) we have

d(Tn, Tnt1) Max{d(Tn, Tn), d(Tn, Tnt1)}
< ca(zn, zn+1) ma.x{a(zn, zn+1)7 d(xna zn+1)}
and so either
dz(xny xn+1) S CO'(Zn, zn+1)d(xna xn+1)

which implies that
d(xna xn-l—l) S CO’(Zn, zn-l-l)

or
dz(xny zn-l—l) S caz(zn, zn-l—l)
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which implies that
: d(znazn+l) < bO‘(Zn,Zn+1),

where b = /¢ > ¢. Thus either case implies that

(18) d(Zp,Tns1) < bo(2n, 2nt1)-
Applying inequality (17) we have

0(2n, Znt1) max{o(zn, 2n), 0(2n, Znt+1)}

< ¢p(Yns Ynt1) Max{p(Yn, Yns1), 0(2n, 2nt1)}

and it follows as above that

(19) : U(zn’ Zn+1) < bp(ym yn+1)'
Applying inequality (16) we have

P(Yn> Yn41) Max{p(¥n, yn), P(Yns Ynt1)}
< Cd(:l)n_l, IIIn) ma.x{d(:l:n_1 3 IBn), p(ynv yn+1)}

and it follows as above that
(20) p(yn’ yn+1) S bd(zn—lv xn)-
It now follows from inequalities (18), (19) and (20) that

& Tnt1) < 80 (2ns Zng1) < 02 0(Yns Yng1) < - .. < 6°"d(20, 21).
Since 0 < b < 1, {zn}, {yn} and {2,} are Cauchy sequences with the limits
u, v and win X, Y and Z respectively.

Now suppose that S is continuous. Then lim,_,o, SY, = lim,_, o 2, and
$0
(21) Sv=w.

Applying inequality (15) we now have

d(RSv,zy) max{d(zn-1, RSV),d(2n~1,2s)}
< co(Sv, zn) max{o(Sv, z,),d(Tn-1,2n)}
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Letting n tend.to infinity, it follows on using equation (21) that d?(RSv, u) <

0 and so
(22) RSv = u.

Using equation (21), this gives us

(23) Rw = u.

Using equation (23) and inequality (16) we have

p(Tu, yn+1) max{p(yn, TRw)a p(yna yn+1)}
< cd(u, zn) max{d(u, z5), P(¥n, Yn+1)}-
Letting n tend to infinity, it follows that p?(Tu,v) < 0 and so

(24) Tu=wv.

It now follows from equations (21), (23) and (24) that

TRSv=TRw=Tu =,
STRw = STu = Sv = w,
RSTu = RSv=Rw=u.

The same results of course will hold if R or T is continuous instead of §.
We now prove the uniqueness of the fixed point u. Suppose that RST
has a second fixed point «’. Then using inequality (15), we have
d*(u,u') = d(RSTu,RSTv')max{d(u, RST'),d(u, RSTu)}
< co(STY', $STu) max{o(STv',STu),d(u, RSTu)},

which implies that
(25) d(u,u’) < ba(STu, STu)}.

Further, using inequality (17), we have

o(STu,STu' Ymax{o(STu, STu'),o(STu, STRSTu)}
= o(STRSTu, STu'Ymax{o(STu, STv"),d(STRSTu, STRSTu)}
< ep(Tv', TRSTu) max{p(Tv', TRSTv),o(STu, STRSTu)},
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which implies that
(26) o(STu,STu') < bp(Tu, Tu').

Finally, using inequality (16), we have

p(Tu, Tv') max{p(Tu, TRSTv'), p(Tu, TRSTu)}
< cd(RSTv, RSTw) max{d(RSTv', RSTu), p(Tu, TRSTu)},

which implies that

(27) p(Tu, Tu') < bd(u,u).

Since b < 1, it now follows immediately from inequalities (25), (26) and (27)
that u = u/. The fixed point u of RST is therefore unique. Similarly, it can
be proved that v is the unique fixed point of TRS and w is the unique fixed
point of STR. This completes the proof of the theorem.
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