FIXED POINTS ON THREE COMPLETE METRIC SPACES

R.K. Jain, A.K.Shrivastava

Department of Mathematics & Statistics, Dr. H.S. Gour University, Sagar - 470 003 (M.P.), India

Brian Fisher

Department of Mathematics and Computer Science, University of Leicester, Leicester, LE1 7RH, England

Abstract

We obtained some related fixed point theorems for three metric spaces.

AMS Mathematics Subject Classification (1991): 54H25 Key words and phrases: related fixed point, complete metric space

The following fixed point theorem was proved by Nung [1].

Theorem 1. Let (X,d), (Y,ρ) and (Z,σ) be complete metric spaces and suppose T is a continuous mapping of X into Y, S is a continuous mapping of Y into Z and R is a continuous mapping of Z, into X satisfying the inequalities

$$\begin{array}{lcl} d(RSTx,RSy) & \leq & c\max\{d(x,RSy),d(x,RSTx),\rho(y,Tx),\sigma(Sy,STx)\},\\ \rho(TRSy,TRz) & \leq & c\max\{\rho(y,TRz),\rho(y,TRSy),\sigma(z,Sy),d(Rz,RSy)\},\\ \sigma(STRz,STx) & \leq & c\max\{\sigma(z,STx),\sigma(z,STRz),d(x,Rz),\rho(Tx,TRz)\} \end{array}$$

for all x in X, y in Y and z in Z, where $0 \le c < 1$. Then RST has a unique fixed point u in X, TRS has a unique fixed point v in Y and STR has a unique fixed point w in Z. Further, Tu = v, Sv = w and Rw = u.

The next theorem was proved in [2].

Theorem 2. Let (X,d), (Y,ρ) and (Z,σ) be complete metric spaces. If T is a continuous mapping of X into Y, S is a continuous mapping of Y into Z and R is a mapping of Z into X satisfying the inequalities

for all x, x' in X, y, y' in Y and z, z' in Z where $0 \le c < 1$. Then RST has a unique fixed point u in X, TRS has a unique fixed point v in Y, and STR has a unique fixed point w in Z. Further, Tu = v, Sv = w and Rw = u.

We now prove the following related fixed point theorems:

Theorem 3 Let (X,d), (Y,ρ) and (Z,σ) be complete metric spaces and suppose T is a mapping of X into Y, S is a mapping of Y into Z, and R is a mapping of Z into X satisfying the inequalities

$$\begin{array}{lll} d^2(RSy,RSTx) & \leq & c \max\{d(x,RSy)\rho(y,Tx),\rho(y,Tx)d(x,RSTx),\\ (1) & & d(x,RSTx)\sigma(Sy,STx),\sigma(Sy,STx)d(x,RSy)\}\\ \rho^2(TRz,TRSy) & \leq & c \max\{\rho(y,TRz)\sigma(z,Sy),\sigma(z,Sy)\rho(y,TRSy),\\ (2) & & \rho(y,TRSy)d(Rz,RSy),d(Rz,RSy)\rho(y,TRz)\}\\ \sigma^2(STx,STRz) & \leq & c \max\{\sigma(z,STx)d(x,Rz),d(x,Rz)\sigma(z,STRz),\\ (3) & & \sigma(z,STRz)\rho(Tx,TRz),\rho(Tx,TRz)\sigma(z,STx)\} \end{array}$$

for all x in X, y in Y and z in Z, where $0 \le c < 1$. If one of the mappings R, S, T is continuous, then RST has a unique fixed point u in X, TRS has a unique fixed point v in Y, and STR has a unique fixed point w in Z. Further, Tu = v, Sv = w and Rw = u.

Proof. Let x_0 be an arbitrary point in X. Define the sequences $\{x_n\}$, $\{y_n\}$ and $\{z_n\}$ in X, Y and Z respectively by

$$x_n = (RST)^n x_0, \quad y_n = T x_{n-1}, \quad z_n = S y_n$$

for n = 1, 2, ...

Applying inequality (2) we have

$$\rho^{2}(y_{n}, y_{n+1}) = \rho^{2}(TRz_{n-1}, TRSy_{n})
\leq c \max\{\rho(y_{n}, y_{n})\sigma(z_{n-1}, z_{n}), \sigma(z_{n-1}, z_{n})\rho(y_{n}, y_{n+1}),
\rho(y_{n}, y_{n+1})d(x_{n-1}, x_{n}), d(x_{n-1}, x_{n})\rho(y_{n}, y_{n})\}
= c \max\{\sigma(z_{n-1}, z_{n})\rho(y_{n}, y_{n+1}), \rho(y_{n}, y_{n+1})d((x_{n-1}, x_{n}))\}$$

and so

(4)
$$\rho(y_n, y_{n+1}) \le c \max\{d(x_{n-1}, x_n), \sigma(z_{n-1}, z_n)\}.$$

Applying inequality (3) we have

$$\sigma^{2}(z_{n}, z_{n+1}) = \sigma^{2}(STx_{n-1}, STRz_{n})$$

$$\leq c \max\{\sigma(z_{n}, z_{n})d(x_{n-1}, x_{n}), d(x_{n-1}, x_{n})\sigma(z_{n}, z_{n+1}), \sigma(z_{n}, z_{n+1})\rho(y_{n}, y_{n+1}), \rho(y_{n}, y_{n+1})\sigma(z_{n}, z_{n})\}$$

$$= c \max\{d(x_{n-1}, x_{n})\sigma(z_{n}, z_{n+1}), \sigma(z_{n}, z_{n+1})\rho(y_{n}, y_{n+1})\}$$

and so

(5)
$$\sigma(z_n, z_{n+1}) \leq c \max\{d(x_{n-1}, x_n), \rho(y_n, y_{n+1})\}$$
$$\leq c \max\{d(x_{n-1}, x_n), \sigma(z_{n-1}, z_n)\}$$

on using inequality (4).

Applying inequality (1) we have

$$\begin{array}{lll} d^2(x_n,x_{n+1}) & = & d^2(RSy_n,RSTx_n) \\ & \leq & c\max\{d(x_n,x_n)\rho(y_n,y_{n+1}),\rho(y_n,y_{n+1})d(x_n,x_{n+1}), \\ & & d(x_n,x_{n+1})\sigma(z_n,z_{n+1}),\sigma(z_n,z_{n+1})d(x_n,x_n)\} \\ & = & c\max\{\rho(y_n,y_{n+1})d(x_n,x_{n+1}),d(x_n,x_{n+1})\sigma(z_n,z_{n+1})\} \end{array}$$

and so

$$d(x_n, x_{n+1}) \leq c \max\{\rho(y_n, y_{n+1}), \sigma(z_n, z_{n+1})\}$$

$$\leq c \max\{d(x_{n-1}, x_n), \sigma(z_{n-1}, z_n)\}$$

on using inequalities (4) and (5).

It now follows easily by induction on using inequalities (4), (5) and (6) that

$$d(x_n, x_{n+1}) \leq c^{n-1} \max\{d(x_1, x_2), \sigma(z_1, z_2)\},$$

$$\rho(y_n, y_{n+1}) \leq c^{n-1} \max\{d(x_1, x_2), \sigma(z_1, z_2)\},$$

$$\sigma(z_n, z_{n+1}) \leq c^{n-1} \max\{d(x_1, x_2), \sigma(z_1, z_2)\}.$$

Since $0 \le c < 1$, it follows that $\{x_n\}$, $\{y_n\}$ and $\{z_n\}$ are Cauchy sequences with limits u, v and w in X, Y and Z respectively.

Now suppose that S is continuous. Then $\lim_{n\to\infty} Sy_n = \lim_{n\to\infty} z_n$ and so

$$Sv = w.$$

Applying inequality (1) we now have

$$d^{2}(RSv, x_{n+1}) = d^{2}(RSv, RSTx_{n})$$

$$\leq c \max\{d(x_{n}, RSv)\rho(v, Tx_{n}), \rho(v, Tx_{n})d(x_{n}, x_{n+1}), d(x_{n}, x_{n+1})\sigma(Sv, STx_{n}), \sigma(Sv, STx_{n})d(x_{n}, RSv)\}.$$

Letting n tend to infinity, it follows on using equation (7) that $d^2(RSv, u) \leq 0$ and so

$$RSv = u.$$

Using equation (7), this gives us

$$(9) Rw = u.$$

Using equation (8) and inequality (2) we have

$$\rho^{2}(Tu, y_{n+1}) = \rho^{2}(TRSv, TRSy_{n})
\leq c \max\{\rho(y_{n}, TRSv)\sigma(Sv, Sy_{n}), \sigma(Sv, Sy_{n})\rho(y_{n}, TRSy_{n}), \rho(y_{n}, TRSy_{n})d(RSv, RSy_{n}), d(RSv, RSy_{n})\rho(y_{n}, TRSv)\}.$$

Letting n tend to infinity, it follows on using equation (8) again that $\rho^2(Tu, v) \leq 0$ and so

$$(10) Tu = v.$$

It now follows from equations (7), (9) and (10) that

$$TRSv = TRw = Tu = v,$$

 $STRw = STu = Sv = w,$
 $RSTu = RSv = Rw = u.$

The same results of course will hold if R or T is continuous instead of S.

We now prove the uniqueness of the fixed point u. Suppose that RST has a second fixed point u'. Then using inequality (1), we have

$$d^{2}(u, u') = d^{2}(RSTu, RSTu')$$

$$\leq c \max\{d(u', u)\rho(Tu, Tu'), \rho(Tu, Tu')d(u', u'),$$

$$d(u', u')\sigma(STu, STu'), \sigma(STu, STu')d(u', RSTu)\}$$

$$= c \max\{d(u, u')\rho(Tu, Tu'), \sigma(STu, STu')d(u, u')\},$$

which implies that

(11)
$$d(u, u') \le c \max\{\rho(Tu, Tu'), \sigma(STu, STu')\}.$$

Further, using inequality (2), we have

$$\rho^{2}(Tu, Tu') = \rho^{2}(TRSTu, TRSTu')
\leq c \max\{\rho(Tu', Tu)\sigma(STu, STu'), \sigma(STu, STu')\rho(Tu', Tu'), \rho(Tu', Tu')d(u, u'), d(u, u')\rho(Tu, Tu')\}
= c \max\{\rho(Tu, Tu')\sigma(STu, STu'), d(u, u')\rho(Tu, Tu')\},$$

which implies that

(12)
$$\rho(Tu, Tu') \le c \max\{\sigma(STu, STu'), d(u, u')\}.$$

Inequalities (11) and (12) imply that

(13)
$$d(u, u') \le c\sigma(STu, STu').$$

Finally, using inequality (3), we have

$$\begin{split} \sigma^2(STu,STu') &= \sigma^2(STRSTu,STRSTu') \\ &\leq c \max\{\sigma(STu,STu')d(u,u'),d(u,u')\sigma(STu',STu'), \\ & \sigma(STu',STu')\rho(Tu,Tu'),\rho(Tu,Tu')\sigma(STu,STu')\} \\ &= c \max\{\sigma(STu,STu')d(u',u),\sigma(STu,STu')\rho(Tu,Tu')\}, \end{split}$$

which implies that

(14)
$$\sigma(STu, STu') \le c \max\{d(u, u'), \rho(Tu, Tu')\}.$$

It now follows from inequalities (12), (13) and (14) that

$$d(u, u') \le c\sigma(STu, STu') \le c^2\sigma(STu, STu'),$$

and so u = u', since c < 1. The fixed point u of RST is therefore unique. Similarly, it can be proved that v is the unique fixed point of TRS and w is the unique fixed point of STR. This completes the proof of the theorem.

Theorem 4 Let (X,d), (Y,ρ) and (Z,σ) be complete metric spaces and suppose T is a mapping of X into Y, S is a mapping of Y into Z, and R is a mapping of Z into X satisfying the inequalities

$$d(RSy, RSTx) \max\{d(x, RSy), d(x, RSTx)\}$$

$$(15) \qquad \leq c\sigma(Sy, STx) \max\{\sigma(Sy, STx), d(x, RSTx)\},$$

$$\rho(TRz, TRSy) \max\{\rho(y, TRz), \rho(y, TRSy)\}$$

$$(16) \qquad \leq cd(Rz, RSy) \max\{d(Rz, RSy), \rho(y, TRSy)\},$$

$$\sigma(STx, STRz) \max\{\sigma(z, STx), \sigma(z, STRz)\}$$

$$\leq c\rho(Tx, TRz) \max\{\rho(Tx, TRz), \sigma(z, STRz)\}$$

for all x in X, y in Y and z in Z, where $0 \le c < 1$. If one of the mappings R, S, T is continuous, then RST has a unique fixed point u in X, TRS has a unique fixed point v in Y, and STR has a unique fixed point w in Z. Further, Tu = v, Sv = w and Rw = u.

Proof. Let x_0 be an arbitrary point in X and define the sequences $\{x_n\}$, $\{y_n\}$ and $\{z_n\}$ in X, Y and Z respectively as in the proof of Theorem 2.

Applying inequality (15) we have

$$d(x_n, x_{n+1}) \max\{d(x_n, x_n), d(x_n, x_{n+1})\}$$

$$\leq c\sigma(z_n, z_{n+1}) \max\{\sigma(z_n, z_{n+1}), d(x_n, x_{n+1})\}$$

and so either

$$d^{2}(x_{n}, x_{n+1}) \leq c\sigma(z_{n}, z_{n+1})d(x_{n}, x_{n+1})$$

which implies that

$$d(x_n, x_{n+1}) \le c\sigma(z_n, z_{n+1})$$

or

$$d^{2}(x_{n}, x_{n+1}) \leq c\sigma^{2}(z_{n}, z_{n+1})$$

which implies that

$$d(x_n, x_{n+1}) \le b\sigma(z_n, z_{n+1}),$$

where $b = \sqrt{c} \ge c$. Thus either case implies that

$$(18) d(x_n, x_{n+1}) \le b\sigma(z_n, z_{n+1}).$$

Applying inequality (17) we have

$$\begin{split} \sigma(z_n, z_{n+1}) \max \{ \sigma(z_n, z_n), \sigma(z_n, z_{n+1}) \} \\ & \leq c \rho(y_n, y_{n+1}) \max \{ \rho(y_n, y_{n+1}), \sigma(z_n, z_{n+1}) \} \end{split}$$

and it follows as above that

(19)
$$\sigma(z_n, z_{n+1}) \le b\rho(y_n, y_{n+1}).$$

Applying inequality (16) we have

$$\rho(y_n, y_{n+1}) \max \{ \rho(y_n, y_n), \rho(y_n, y_{n+1}) \}$$

$$\leq c d(x_{n-1}, x_n) \max \{ d(x_{n-1}, x_n), \rho(y_n, y_{n+1}) \}$$

and it follows as above that

(20)
$$\rho(y_n, y_{n+1}) \le bd(x_{n-1}, x_n).$$

It now follows from inequalities (18), (19) and (20) that

$$d(x_n, x_{n+1}) \le b\sigma(z_n, z_{n+1}) \le b^2 \rho(y_n, y_{n+1}) \le \ldots \le b^{3n} d(x_0, x_1).$$

Since $0 \le b < 1$, $\{x_n\}$, $\{y_n\}$ and $\{z_n\}$ are Cauchy sequences with the limits u, v and w in X, Y and Z respectively.

Now suppose that S is continuous. Then $\lim_{n\to\infty} Sy_n = \lim_{n\to\infty} z_n$ and so

$$(21) Sv = w.$$

Applying inequality (15) we now have

$$d(RSv, x_n) \max\{d(x_{n-1}, RSv), d(x_{n-1}, x_n)\}\$$

$$\leq c\sigma(Sv, z_n) \max\{\sigma(Sv, z_n), d(x_{n-1}, x_n)\}.$$

Letting n tend to infinity, it follows on using equation (21) that $d^2(RSv, u) \leq 0$ and so

$$(22) RSv = u.$$

Using equation (21), this gives us

$$(23) Rw = u.$$

Using equation (23) and inequality (16) we have

$$\rho(Tu, y_{n+1}) \max \{ \rho(y_n, TRw), \rho(y_n, y_{n+1}) \}$$

$$\leq cd(u, x_n) \max \{ d(u, x_n), \rho(y_n, y_{n+1}) \}.$$

Letting n tend to infinity, it follows that $\rho^2(Tu, v) \leq 0$ and so

$$(24) Tu = v.$$

It now follows from equations (21), (23) and (24) that

$$TRSv = TRw = Tu = v,$$

 $STRw = STu = Sv = w,$
 $RSTu = RSv = Rw = u.$

The same results of course will hold if R or T is continuous instead of S.

We now prove the uniqueness of the fixed point u. Suppose that RST has a second fixed point u'. Then using inequality (15), we have

$$\begin{array}{lcl} d^2(u,u') & = & d(RSTu,RSTu')\max\{d(u,RSTu'),d(u,RSTu)\}\\ & \leq & c\sigma(STu',STu)\max\{\sigma(STu',STu),d(u,RSTu)\}, \end{array}$$

which implies that

(25)
$$d(u, u') \le b\sigma(STu, STu')\}.$$

Further, using inequality (17), we have

$$\sigma(STu, STu') \max\{\sigma(STu, STu'), \sigma(STu, STRSTu)\}$$

$$= \sigma(STRSTu, STu') \max\{\sigma(STu, STu'), \sigma(STRSTu, STRSTu)\}$$

$$\leq c\rho(Tu', TRSTu) \max\{\rho(Tu', TRSTu), \sigma(STu, STRSTu)\},$$

which implies that

(26)
$$\sigma(STu, STu') \le b\rho(Tu, Tu').$$

Finally, using inequality (16), we have

$$\rho(Tu, Tu') \max\{\rho(Tu, TRSTu'), \rho(Tu, TRSTu)\}$$

$$\leq cd(RSTu', RSTu) \max\{d(RSTu', RSTu), \rho(Tu, TRSTu)\},$$

which implies that

(27)
$$\rho(Tu, Tu') \le bd(u, u').$$

Since b < 1, it now follows immediately from inequalities (25), (26) and (27) that u = u'. The fixed point u of RST is therefore unique. Similarly, it can be proved that v is the unique fixed point of TRS and w is the unique fixed point of STR. This completes the proof of the theorem.

References

- [1] Nung, N.P., A fixed point theorem in three metric spaces, Math. Sem. Notes, Kobe Univ. 11 (1983), 77-79.
- [2] Jain, R.K., Sahu, H.K, Fisher, B., Related fixed point theorems for three metric spaces, Univ. u Novom Sadu Zb. Prirod.-Mat. Fak. Ser. Mat., to appear.

Received by the editors November 18, 1996.