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Abstract

Using the Basic matrix Theorem, the sequential continuity of the
adjoint operator for linear operator on locally convex topological vec-
tor spaces is proved. It is an improvement of the boundedness version
of an earlier obtained generalized Adjoint Theorem.
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In [9], we have established a generalization of the theorem (Adjoint The-
orem) concerning the boundedness of the adjoint operator for a linear op-
erator on locally convex topological vector space, with respect to particular
topologies. Particularly, in the case of the normed space, the adjoint theo-
rem ([1],{7],[8],[11]) asserts that the adjoint operator for a linear operator is
always a bounded linear operator when the domain is a K-space ([1], 3.11,

(8], [9], [11]).
In this note we prove the sequential continuity of the adjoint operator
with respect to particular topologies on locally convex topological vector
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spaces. Further we improve the boundedness version of the Adjoint Theorem
established in [9] by replacing the topology KX(E’,E) by an other locally
convex topology 8*(E', E).

Our method of proof is based on the elementary Basic Matrix Theo-
rem ([1], 2.1) so we avoid the use of the Bair Category Theorem (see also

[8],[91,[10],[13]).
We begin by fixing some notations and terminology.

If (X, ) is a topological vector space, a sequence {z;} in X is said to
be a 7 -K sequence if every subsequence of {z} has a further subsequence
{zn,} such that the subseries }  z,, is 7 - convergent to an element of X.
A topological vector space (X, 7) is said to be a K - space if every sequence
which converges to 0 is a 7 - K sequence ([1], Ch. 3). A subset A of X is
said to be T -K bounded if for every sequence {z,} C A and every scalar
sequence {t,} which converges to 0, the sequence {t,z,} is a 7 - K sequence.

Throughout this paper £ and F' will be Hausdorff locally convex topo-
logical vector spaces and T': E — F a linear mapping. The domain of the
adjoint operator, T”, is defined to be

D(T')={y' € F':y'T ¢ E'}

and
T': D(T') — E' is defined by Ty’ = y'T.

Theorem 1. T’ is sequentially continuous with respect to the relative o(F', F')
topology on D(T") and the topology on E' of uniform convergence ono(E, E')—
K convergent sequences. In particular, T’ is bounded with respect to these
topologies.

Proof. Let {y.} C D(T") be o(F", F) convergent to 0 and let {z;} C E' bea
o(E, E') — K sequence. Consider the matrix

M =[< Ty, z; >] = [< ¥}, Tz; >].

It can be easily checked that M is a K-matrix (see [1]), so by the Basic
Matrix Theorem of [1], 2.1 or [6], 2.1

lim < T'yl,z; >=0

i—00
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‘uniformly for j € V.

In particular, if F is a normed vector space, we obtain an interesting
Corollary. First, we require

Lemma 1. Let E be normed vector space. A subset B of X' is norm
bounded iff B is uniformly bounded on sequences which are norm convergent
to 0.

Proof. It is obvious that a normed bounded subset B of X’ is uniformly
bounded on sequences which are norm convergent to 0. Suppose that the
converse is not true, i.e. there exists a sequence {z/,} from B with | z/, |> n?.
Pick z, € X such that | z, |= 1 and

1
<z, zn > > {2} — -
Then we have | 22 |— 0 as » — oco. But

T 1
|<z;,7ﬂ >| >n—;2-,

is contradicting the hypothesis.

Corollary 1. Let FE be a normed K - space. Then T’ carries weak* bounded
subsets of D(T") to norm bounded subsets of E'. In particular, T" is norm -
bounded.

Proof. In a normed K - space F, any sequence which converges to 0 is norm
K convergent and so o(E, E’) - K convergent. Hence by Theorem 1 and
Lemma 1 we obtain the desired conclusion.

The boundedness version of the Adjoint Theorem for locally convex topo-
logical vector spaces established previously in [9] using the topology K(E’, E)
can be improved by using the topology §*(E’, E) , i.e. the topology on E’
of uniform convergence on (E, E’) bounded subsets of E. K(E’, E) is the
locally convex topology on E’ of uniform convergence on the o(E, E’) -
K bounded subsets of E ([12]). The topology F*(E’, E) is stronger than
K(E',E) (see Lemma 3 and Remark 2) so the boundedness result below in
Theorem 3 improves the earlier version.
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Lemma 2. If A C F s absolutely convez, bounded and sequentially com-
plete, then A is K - bounded.

Proof. Let {z;} be a sequence from A and {¢;} be a sequence of scalars
such that t; — 0. Given any subsequence of {¢;} pick a further subsequence
{tn;} such that

o0
St I< 1.
=1

Let p be a continuous semi-norm on E. The partial sums S; = Ef bn,; Tn,
belong to A and form a Cauchy sequence in A since if £ > ¢

k k
P(Se=80) < D |ta,; | p(za,) SsupP(2) Y, |10, |-
=241 z€A =41

Hence the series 3 72, ¢, n; converges in A since A is sequentially complete.

Remark 1. Note that Lemma 2 apply if A is absolutely convex and com-
pact.

Lemma 3. IfB C E'isa(E',E) - K bounded, then B is §(E', E) bounded.

Proof. Let A C E be o(E,E') bounded. It suffices to show that
{< z!,z; >} is bounded whenever {z!} C B and {z;} C A. Let {t;} be
a sequence of positive real numbers which tends to zero. Consider the ma-

trix
M = [< VG, iz >]

Since {v%iz;} is o(E, E') convergent to 0 and {,/%;z}} is o(E',E)- K
convergent, M is a K-matrix. Then by the Basic Matrix Theorem, ¢; <
zh,z; >— 0 as i — 0o. Hence {< z!,z; >} is bounded.

Remark 2. Lemma 3 implies
8*(E,E'YCK(E,E) and K(E,E')C r(E,E)

(see [12]).

We shall need the following known result (since we could not find a good
reference for it, we shall prove this theorem for the sake of completeness of
the paper).
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Theorem 2. A subset B of E is o(E, E’) bounded iff B is §*(E, E') bounded.

Proof. It is clear that §*(F, E’) boundedness implies boundedness since
B*(E, E’) is stronger than o(E, E’). Now, suppose that B C E is bounded.
Let A C E’ be B(E', E) (equivalently o(E’, E”)) bounded. Then Ay, the
polar of A, is a basic §*(E, E’) neighbourhood of 0 in F’ and so there exists
t > 0 such that A C tB°. Then

1 1
Ao € (7)B € (7)B;

where B is the bipolar of B.
Hence B is absorbed by Ag.

Remark 3. This theorem shows that any bounded set is X(E,E’) bounded
and improved the result in [11].

We have the following boundedness result for the adjoint operator.

Theorem 3. T’ carries weak* bounded subsets of D(T") into §*(E’, E) bounded
sets.

Proof. Let B C D(T') be weak* bounded. We claim 7'B is ¢(E', E)
bounded. Let z € F. Since B is weak* bounded we have

sup |< T'y,z >|= sup |< ¢/, Tz >|< .
y'eB y'eB

By Theorem 2 the set 7B is 8*(E’, E) bounded.

Remark 4. Theorem 3 improves Theorem 3 in [9].

If E is an A - space, i.e. every bounded subset of F. is X- bounded, then
we have the following two results.

Theorem 4. If E is an A-space for any locally convexr topology which is
compatible with the duality between F and E’, then every weakly bounded
subset of E is strongly bounded and B(E’, E) = 3*(E', E).

Proof. By [6] (E,¢(E,E’))is an A - space. Hence by Lemma 3 any o(E, E)
bounded set is §(E, E') bounded and B(E, E') = *(E, E’).
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In particular, if E i sequentially complete, then E is an 4 space (see [6]). So
every weakly bounded subset of E is strongly bounded; this result is often
referred to as the Banach-Mackey Theorem ([4], 20.1 (8), [14] 10.4.8). Thus,
Theorem 4 extends the Banach-Mackey Theorem to A4 - spaces.

Corollary 2. ([9], Theorem 4.) If E is an A - space, then T’ carries weak*
bounded sets of D(T') into B(F', E) bounded sets.

Proof. Follows by Theorems 3 and 4.

This result generalizes Corollary since the strong topology of the dual of
a normed space is just the dual norm topology. From Theorem 3 we shall
obtain a general continuity result which gives Theorem 5 from [9] as a special
case.

Theorem 5. If D(T') = F' (equivalently, if T is o(E,E') — o(F, F') con-
tinuous), then T' is f**(E, E") — B(F, F') continuous.

Proof. Let B C F' be o(F',F) bounded. Then TB is 8*(E’, E') bounded
by Theorem 3. Since (T'B)° is the basic §**(E, E') neighbourhood and By
is the basic S(F, F’) neighbourhood, we have that the equality (7/B)o =
T~1(By) gives the result.

From Theorems 5 and 4 we have

Corollary 3. ([9], Theorem 5). If E is an A - space and D(T') = F’, then
T is B*(E, E’) — B(F, F') continuous.
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