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Abstract

We shall consider the selfadjoint singularly perturbed problem de-
scribed by the second order diferrential equation. The solution inside
the layer is approximated by Newton’s iteration represented in the
form of truncated orthogonal series due to the Chebyshev basis. For
that purpose, the domain decomposition is performed according to the
suitable resemblance function. The coefficients of the spectral approx-
imation are determined by the collocation method at Gauss-Lobatto
nodes. The error function is estimated according to the principle of
inverse monotonicity, using the asymptotic behavior of the exact solu-
tion. Numerical results show high accuracy of the presented method.
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1. Introduction

We shall consider the singularly perturbed problem

(1) Tu(z) = —*u"(z) + b(z,u) =0, z €[0,1)
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(2) w(0) = 0, u(1) =0,

where £ > 0 is a small parameter, b,(z,u) > 82 > 0, (z,u) € [0,1] x R and
b{z,u) € C?([0,1] x R).

It is well known (see e.g. [5]) that under the above assumptions the
problem (1), (2) has two boundary layers, where the values of the exact
solution change extremely rapidly. The problems of this kind are involved
in mathematical models of diffusion-convection phenomena and it has been
recognized that certain difficulties arise when standard spectral approxima-
tions are applied in the cases where € is very small. The author has already
developed a modification of the standard spectral methods for some linear
singularly perturbed problems of selfadjoint type (see e.g. [1]). In that paper
the author has introduced the domain decomposition by using the so-called
resemblance function, and the coefficients of the spectral approximation were
evaluated directly from the obtained linear system. In this paper the author
adapts these ideas to the given nonlinear case. The domain decomposition
is performed using a modified resemblance function, and the approximate
solution inside the layer is represented in the form of truncated orthogo-
nal series due to the Chebyshev orthogonal basis. The approximation is
evaluated iteratively by Newton’s method, which allows the coefficients of
the spectral approximation to be evaluated for each iteration as the solu-
tion of the appropriate linear system of equations. Such system is obtained
by the collocation method using Gauss-Lobatto nodes. This combination
gives a highly accurate method using only a small number of terms in the
appropriate truncated series. This is confirmed by the numerical results.

In Section 2, the original problem will be transformed and the layer
subintervals will be determined using the same idea as in the case of self-
adjoint linear problems. In Section 3, the approximate solution will be con-
structed using Newton’s iterative method. In Section 4, the upper bound
function for the error estimate will be constructed, and in Section 5 the
theoretical results will be illustrated by a numerical example.

2. Transformation of the problem

It was shown in [4] that for the problem (1),(2), under the given assumptions,
we have the unique exact solution u.(z) € C*[0, 1], for which the following
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estimate holds

~pa —p(1—z)
(3) lue(z) — 2(2)] € Moe™e + Mye~ ¢ + Mae?,
where z(x) represents the solution of reduced problem b(2,u) = 0 and

M;, 1 =0,1,2 are constants independent of z and ¢, such that

:7%;2, z € [0, 1].

AJO Z IZ(O)I, M1 2 |z(1)|, A/Iz Z

From (3) we can see that, in general, we have two boundary layers of the
order O(¢).

It is known that under the given assumptions there exist the unique
reduced solution z(z) which belongs to the class C?[0,1].

We are going to approximate the exact solution of (1),(2) by

w(z) z €0,ec]
(4) a(z) =14 z(z) x€feg,1—ce] .
ur(z) z €l —cel]

The function u;(2) approximates the left layer solution and it represents the
solution of the boundary value problem

(5) Tu(z) =0, w(0) =0, uce) = z(ce)

and u,(x) approximates the right layer solution and represents the solution
of the problem

Tu(z)=0, u(1—ce)=2(1~ce), u(l)=0.

All further investigations will be carried out for the left layer solution.

The value ¢, which determines the division points ce and 1 — ce is going
to be determined by the same technique as in the linear case (see [1]), using
the following definition and lemma,

Definition 1. A sum of the reduced solution and a function p,,(z) € C2[0, ce]
is called a ~»semblance function for the problem (5) if

1. it satisfies the boundary conditions in (5),
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2. © = ce is the stationary point for p,(z),

3. pm(z) is concave for z(0) < 0 and convez for z(0) > 0.

Lemma 1. The function

cE— T

(6) r(z)=z(z)+ pm(z) = 2(z) — 2(0) ( )m ,meN,m>2.

cE

is a resemblance function for the problem (5).

Proof. We have to verify the conditions from Def. 1.

1. 7(0) = 2(0) — 2(0) (252)" =0

and

r(ce) = z(ee) — 2(0) (==)™ = z(ce).

2. pl(z)= m—z@l (u)m_1 = 0 only for z = ce.

ce

3. pl(z) = —dm= 1)2(0) (£=2)™7*, so that sgnp’,(z) = — sgnz(0).

The resemblance function enables us to determine the value ¢ in the
expression for the division point, in such a way that it depends on the
degree m of the truncated orthogonal series, which is going to be used for
the approximation of the layer solution. The value ¢ is obtained from the
request that the resemblance function satisfies the differential equation in
(5) at the layer point z = 0. Geometrically, this will show us how far
from .the layer point z = 0 should we go if we want to provide that the
approximate solution, represented as a sum of the reduced solution and
truncated orthogonal series of degree m, resembles the layer solution u;(z).

Theorem 1. The value ¢, which determines the division point ce, is

. \/—Z(O)m(m -1)

(%) 50,00

when ¢ is sufficiently small.
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Proof. Introducing (6) into the differential equation in (5) we obtain

" - 1)z(0 —-z\"? .
—e22(z) + m(m - )z(0) (0506 ) + b(z,r(z)) = 0.

At the layer point z = 0, with respect to r(0) = 0, the above equality
becomes .
m — 1)z(0)
o2

_ez(0) + ™ + 5(0,0) = 0.

For ¢ sufficiently small, this will give us the quadratic equation in ¢

m(m —1)z(0)

o +5(0,0) = 0.

The positive solution of this equation is given by (7).

The existence of the square root in (7) is provided by the fact that for
2(0) > 0 the layer solution is convex, ie. u"(z) < 0 for z € [0, c¢], and from
(1) we can see that sgnb(z,u) = sgnu’(z). Thus, 5(0,0) < 0. If 2(0) < 0 the
layer solution is concave, which implies that 6(0,0) > 0.

Now we can proceed to construct the approximate solution for the prob-

lem (5) using Newton’s iteration method combined with the spectral ap-
proximation.

3. Costruction of the approximate solution

We shall look for the approximate solution of the problem (5) in the form

z(ce)x

(8) vn(z) = yn(z) + Y

where y,(z) is obtained using the n-th iteration in Newton’s method, rep-
resenting it as

(9) p(@) = 3 0T, (£-1),

k=0
i. e. the truncated orthogonal series of the degree m, due to the Chebysev
orthogonal basis. (The notation ‘ax means that the summation involves %ao
rather than ag.)
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In order to obtain the coefficients az, k = 0,1, ..., m we have to transform
first the layer subinterval [0, ce] into [—1,1], using the streching variable

t = 22 — 1. Thus, the finite series (9) becomes

m

(10) wy(t) = Z ‘arTi(t), Tr(t) = cos(k-arccost), k=0,1,...
k=0

and it represents the n-th iteration of Newton’s method for the problem

(11) w'(t) + ¢(t,w) =0, w(-1) =0, w(l) =0,
where ;
e(t,w) = _CZ b (%(t +1),u 4 5(—;—5)(t+ 1)) .

If we assume that the function e(¢,w) is continuous on [~1,1] x R and
satisfies

a) general Lipschitz condition
Ki(v-w) <¢(t,v)—c(t,w) < Ka(v,w), v—w >0, K;,K;€ R, K3 <

b) ¢u(t, w) exists, is continous and concave, or convex, i. e.

c(t,w)—c(t,v) < (w—=v) cy(t,v) or c(t,w)—e(t,v) > (w=—v)-cyu(t,v)

then Newton’s iteration sequence wy,(t), defined by
(12) (1) + (wa(t) — wa1(2))ew(t, wn—1(2)) + e(t, wy—1(2)) = 0,

wn(—l) =0, wn(l) =0

converges monotonically and uniformly to the exact solution of the problem
(11), starting with wg(¢) = 0. (For the proof see [2].)

If we introduce (10) into (12) at each iteration, and ask that the obtained
equation is satisfied at Gauss-Lobatto nodes ¢; = cos -, i =1,2,...,m — 1,
we come to the system of m + 1 equations with m + 1 unknown coeflicients

ag, k = 0,1, ...m. The solution of this system gives the approximate solution

(8).
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4. The error estimate

Out of the boundary layer, the exact solution of the problem (1), (2) is
approximated by the solution of the reduced problem. The error estimate
is given by (3).

Let us now estimate the error upon the layer subinterval (0,ce]. The
error function, according to (8) is

(13)  d(z) = fue(z) — va(z)] < lue(z) — w(z)| + [w(z) — va(z)].

In order to estimate it, we have, first, to prove the following lemma:
Lemma 2. Let b(z,u) € C?*([0,ce] x R) and by(z,u) > (% B € R for
z € (0,ce]. Then
(14) lue(z) — w(2)] < C(e? + e7P°) for z € (0, ce].

Proof. The function u.(z) satisfies the boundary value problem
(15) Tuc(z) =0, 2 € (0,ce], uc(0) =0, uc(ce) = ug.
Subtracting (5) from (15) we obtain

T(ue —ur)(z) =0, (e —u)(0) =0, (ue —w)(ce) = u.(ce) — z(ce).

Under the given assumptions the operator T is inverse monotone. So, by
the principle of inverse monotonicity we can conclude that

(16) lue(2) — w(@)] < |ue(ce) — 2(ce)].

B(l—ce

Using the estimate (3) for ¢ = ce, as e ¢  tends to zero when ¢ is suffi-
ciently small, we obtain (14).

Theorem 2. Let wy(t) represent the solutions of the equation
(17) Wl (1) + Kaw(t) = Kowy(t) — c(t,we(?)) t € (-1,1),
wp{—1) =0, wa(1) =0

where Ko is the constant under generalized Lipshitz condition a) and w,(t)
is the n-th Newton’s iteration. Then the error d(z), defined by (13), can be

estimated as
2z
() —w (— — 1)

(18)  d(z) < C(e* +e¥F) + — , € (0,cel.
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Proof. The proof will be carried out for the case when c(t,w) is con-
cave. Then Newton’s iteration sequence w,(t) converges monotonically and
uniformly downwards to the exact solution of the problem (11), so that
wr(t) > w(t). This implies that

(w(t) — wa (1)) + Ka(w(t) —wn(t)) <0

and so, by the principle of inverse monotonicity, we conclude w(t) > w,(t).

If we define 5
93 ce

then, the following estimate holds

vn(z) < w(z) < va(z),

Wn, (2—$ - 1) — yn(z)

cE

which implies

(19)  |w(z) — vn(2)} < Jva(z) — va(2)| =

Thus, using (14) and (18) in (13) we obtain (17).

5. Numerical example

We shall use the following test example, given in [6]:

— 4+ (L+u)(1+ (L+w)?) =0,
w(0)=0, u(l)=0.
It can be easily seen that
bu(w,u) =1+ 3(1+u)? > 1,

which provides the existence and unigness of the exact solution and the error
estimate at the division point.

The reduced solution is z(z) = —1.

The following results are given for ¢ = 271¢, using the truncated Cheby-
shev series of degree m = 4, m = 6 and m = 8. The calculation is performed
in three iterations. The maximal difference between the exact solution and
the asymptotic one, together with the appropriated values of the number ¢,
which determines the layer subinterval, are presented in Table 1.
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[ ﬂ m:4J m=6 I m=8-]

c ][ 249 ] 3.87 | 5.29 |
n=1 ] 0.04 | 0.06 | 0.1
n=2 || 0.06 | 0.04 | 0.037
n=3 || 0.06 | 0.04 | 0.04

Tabela 1.

The maximal difference between the two iterations yn41{(z) — ya(2) is
presented in Table 2.

l | m=4 | m=6 | m=8 |
| ¢ || 249 | 387 | 529 |

0.00015 | 0.002 0.006
6E9 |14E7| 11E-5
6 E-13 | 3.5 E-11

Tabela 2.

’:Sﬁﬁ
Wl ol b

Il

These results show that the presented’ method is highly accurate and
that, using only a small number of iterations, we can achieve the best pos-
sible accuracy, which is limited by the error in the boundary data at the
division point ce.
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