MEDIAL CYCLIC n-QUASIGROUPS

Zoran Stojaković

Institute of Mathematics, University of Novi Sad Trg Dositeja Obradovića 4, 21000 Novi Sad, Yugoslavia

Abstract

An n-quasigroup (Q, f) is cyclic if $f(x_1, \ldots, x_n) = x_{n+1} \Leftrightarrow f(x_2, \ldots, x_{n+1}) = x_1$ for all $x_1, \ldots, x_{n+1} \in Q$, and it is called medial if $f(y_1, \ldots, y_n) = f(z_1, \ldots, z_n)$, where $y_i = f(x_{i1}, \ldots, x_{in})$, $z_j = f(x_{1j}, \ldots, x_{nj})$, for all $x_{ij} \in Q$, $i, j \in \{1, \ldots, n\}$. Some properties of medial cyclic n-quasigroups and n-loops are determined, and a complete description of medial cyclic n-quasigroups is given. Some sufficient conditions for the existence of self-orthogonal medial cyclic n-quasigroups are obtained. It is proved that every medial cyclic n-loop is a commutative n-group.

AMS Mathematics Subject Classification (1991): 20N15 Key words and phrases: medial, cyclic, n-quasigroup, n-loop

1. Introduction and Definitions

A quasigroup is called semisymmetric if it satisfies the identity x(yx) = y, and it is called idempotent if the identity xx = x holds. Cyclic *n*-quasigroups defined in [8] represent a generalization of semisymmetric quasigroups. Some classes of cyclic *n*-quasigroups are equivalent to Mendelsohn designs.

A quasigroup satisfying the identity (xy)(uv) = (xu)(yv) is called medial. Mediality is an affine property and it serves as a characterization of affine geometries among Steiner systems. Mediality is also related to mean-value theory [1]. Generalizations of mediality to n-quasigroups were considered by Belousov V. D. [3],[4].

In this paper, medial cyclic n-quasigroups and n-loops will be considered. We shall give characterizations of such n-quasigroups and n-loops and obtain some results on the existence of some classes of these n-quasigroups.

First we give some basic definitions and notations.

The sequence $x_m, x_{m+1}, \ldots, x_n$ we shall denote by x_m^n or $\{x_i\}_{i=m}^n$. If m > n, then x_m^n will be considered empty. The sequence x, x, \ldots, x (m times) will be denoted by x. If $m \le 0$, then x will be considered empty.

An n-ary groupoid (n-groupoid) (Q, f) is called an n-quasigroup if the equation $f(a_1^{i-1}, x, a_{i+1}^n) = b$ has a unique solution x for every $a_1^n, b \in Q$ and every $i \in \{1, \ldots, n\} = \mathbb{N}_n$.

An n-quasigroup (Q, f) is called idempotent if for every $x \in Q$ $f(x)^n = x$.

An n-quasigroup (Q, f) is called an n-loop if there exists an element $e \in Q$ such that $f(\stackrel{i-1}{e}, x, \stackrel{n-i}{e}) = x$ for all $x \in Q$ and all $i \in \mathbb{N}_n$, and e is called a unit of that n-loop.

An n-quasigroup (Q, f) is called (i,j)-associative if the following identity holds

$$f(x_1^{i-1},f(x_i^{i+n-1}),x_{i+n}^{2n-1})=f(x_1^{j-1},f(x_j^{j+n-1}),x_{j+n}^{2n-1}).$$

An n-quasigroup which is (i,j)-associative for all $i,j\in\mathbb{N}_n$ is called an n-group.

An n-quasigroup (Q, f) is medial if $f(y_1^n) = f(z_1^n)$, where $y_i = f(\{x_{ij}\}_{j=1}^n)$, $z_j = f(\{x_{ij}\}_{i=1}^n)$ for all $x_{ij} \in Q$, $i, j \in \mathbb{N}_n$.

By S_n we denote the symmetric group of degree n.

If (Q, f) is an n-quasigroup and $\sigma \in S_{n+1}$, then the n-quasigroup f^{σ} defined by

$$f^{\sigma}(\{x_{\sigma(i)}\}_{i=1}^n) = x_{\sigma(n+1)} \iff f(x_1^n) = x_{n+1}$$

is called a σ -parastrophe (or simply parastrophe) of f.

An n-quasigroup (Q, f) is called

a) totally symmetric if $f = f^{\sigma}$ for all $\sigma \in S_{n+1}$,

- b) cyclic if $f = f^{\sigma}$ for all $\sigma \in C$, where C is a subgroup of S_{n+1} generated by the cycle $(12 \dots n+1)$ ([8],[10]).
 - c) commutative if $f = f^{\sigma}$ for all $\sigma \in S_{n+1}$ such that $\sigma(n+1) = n+1$.

An n-quasigroup (Q, f) is cyclic iff the following identities hold

$$f(x_{i+1}^n, f(x_1^n), x_1^{i-1}) = x_i, i = 1, ..., n.$$

The transpose of a quasigroup (Q, \cdot) is the quasigroup (Q, *) where * is the binary operation defined by x * y = yx. A quasigroup (Q, \cdot) is self-orthogonal if it is orthogonal to its transpose, that is, for all $a, b \in Q$ the system xy = a, xy = b has a unique solution. The self-orthogonality of semisymmetric quasigroups was considered in [2],[5],[6],[7], and some of these results were generalized in [10].

The set $\{(Q, f_1), \ldots, (Q, f_n)\}$ of n-quasigroups is said to be orthogonal if for each $(a_1^n) \in Q^n$, there exist a unique $(b_1^n) \in Q^n$ such that $f_i(b_1^n) = a_i$, $i = 1, \ldots, n$. If (Q, f) is an n-quasigroup such that the set $\{f, f_1, \ldots, f_{n-1}\}$ is orthogonal, where f_i , $i = 1, \ldots, n-1$ are the parastrophes of f defined by $f_i(x_1^n) = f(x_{i+1}^n, x_1^i)$, $i = 1, \ldots, n-1$, then (Q, f) is called a self-orthogonal n-quasigroup.

By ε we denote the identity mapping of the set Q.

2. Medial cyclic n-quasigroups

Theorem 1. Let (Q, f) be an n-quasigroup. (Q, f) is a medial cyclic n-quasigroup if and only if there exists a commutative group (Q, +) such that

(1)
$$f(x_1^n) = \varphi x_1 - \varphi^2 x_2 + \varphi^3 x_3 - \dots + (-1)^{n-1} \varphi^n x_n + b,$$

where φ is an automorphism of the group (Q, +), $\varphi^{n+1} = \varepsilon$ when n is odd, $\varphi^{n+1} = -\varepsilon$ when n is even, and $\varphi b = -b$.

Proof. Let (Q, f) be a medial cyclic n-quasigroup. Since (Q, f) is medial by [3] it follows that there exists a commutative group (Q, +) such that

$$f(x_1^n) = \sum_{i=1}^n \theta_i x_i + b,$$

where θ_i , i = 1, ..., n, are automorphisms of the group (Q, +), $\theta_i \theta_j = \theta_j \theta_i$ for all $i, j \in \mathbb{N}_n$ and b is a fixed element from Q.

Since (Q, f) is cyclic it satisfies the identities $f(x_{i+1}^n, f(x_1^n), x_1^{i-1}) = x_i, i = 1, \ldots, n$, hence

(2)
$$\theta_1(\theta_1x_1 + \dots + \theta_nx_n + b) + \theta_2x_1 + \dots + \theta_nx_{n-1} + b = x_n$$

(3)
$$\theta_1 x_2 + \cdots + \theta_{n-1} x_n + \theta_n (\theta_1 x_1 + \cdots + \theta_n x_n + b) + b = x_1,$$

and

(4)
$$\theta_1 x_{i+1} + \dots + \theta_{n-i} x_n + \theta_{n-i+1} (\theta_1 x_1 + \dots + \theta_n x_n + b) + \theta_{n-i+2} x_1 + \dots + \theta_n x_{i-1} + b = x_i,$$

for i = 2, ..., n - 1.

Putting $x_1 = ... = x_n = 0$ in (2),(3) and (4), we get

$$\theta_{n-i+1}b=-b$$

that is, $\theta_i b = -b$ for all $i \in \mathbb{N}_n$.

From (2) for $x_2 = \ldots = x_n = 0$ it follows $\theta_1^2 = -\theta_2$, and for $x_1 = x_3 = \ldots = x_n = 0$ we get $\theta_1\theta_2 = -\theta_3$. By a similar procedure, from (2),(3) and (4) it follows that

$$\theta_i \theta_i = -\theta_k$$

for all $i, j \in \mathbb{N}_n$, where k = i + j for $i + j \le n$, k = i + j - (n + 1) for i + j > n + 1, and $\theta_k = -\varepsilon$ for i + j = n + 1.

From (5) we get that $\theta_2 = -\theta_1^2$, $\theta_3 = \theta_1^3$, $\theta_4 = -\theta_1^4$,..., $\theta_n = (-1)^{n-1}\theta_1^n$ and also that $\theta_1^{n+1} = \varepsilon$ for n odd, $\theta_1^{n+1} = -\varepsilon$ for n even.

Hence we have obtained that

$$f(x_1^n) = \varphi x_1 - \varphi^2 x_2 + \varphi^3 x_3 - \dots + (-1)^n \varphi^{n-1} x_n + b$$

where $\varphi = \theta_1$.

The converse part of the theorem is straightforward.

Theorem 2. Every medial cyclic n-quasigroup (Q, f) defined by

$$f(x_1^n) = \varphi x_1 - \varphi^2 x_2 + \varphi^3 x_3 - \dots + (-1)^{n-1} \varphi^n x_n$$

where (Q, +) is a commutative group, φ an automorphism of the group (Q, +), $\varphi^{n+1} = \varepsilon$ when n is odd, $\varphi^{n+1} = -\varepsilon$ when n is even, and $\varphi + \varepsilon$ is a bijection, is idempotent.

Proof. If n is odd, then $\varphi^{n+1} - \varepsilon = 0$. Since

$$\varphi^{n+1} - \varepsilon = (\varphi + \varepsilon)(-\varepsilon + \varphi - \varphi^2 + \dots - \varphi^{n-1} + \varphi^n)$$

and $\varphi + \varepsilon$ is a bijection, we get that

$$\varphi - \varphi^2 + \dots - \varphi^{n-1} + \varphi^n = \varepsilon.$$

Hence for every $a \in Q$

$$f(\overset{n}{a}) = \varphi a - \varphi^2 a + \dots - \varphi^{n-1} a + \varphi^n a = (\varphi - \varphi^2 + \dots - \varphi^{n-1} + \varphi^n) a = a.$$

If n is even, then $\varphi^{n+1} + \varepsilon = 0$, but since

$$\varphi^{n+1} + \varepsilon = (\varphi + \varepsilon)(\varepsilon - \varphi + \varphi^2 - \dots + \varphi^n)$$

we obtain $\varphi - \varphi^2 + \cdots - \varphi^n = \varepsilon$, which gives that (Q, f) is idempotent. \square

Since in every commutative group (Q, +) the automorphism φ defined by $\varphi(x) = -x$ satisfies all conditions of Theorem 1, we get the following theorem.

Theorem 3. For every $v \in \mathbb{N}$ there exists a medial cyclic n-quasigroup of order v.

In [10], self-orthogonal cyclic n-quasigroups were investigated. In Theorem 1 from [10] n-quasigroups defined by (1) with b = 0 were considered, but the proof of that theorem applies also to n-quasigroups with $b \neq 0$. So, Theorem 1 from [10] implies the following theorem.

Theorem 4. Every medial cyclic n-quasigroup (Q, f) defined by

$$f(x_1^n) = \varphi x_1 - \varphi^2 x_2 + \varphi^3 x_3 - \dots + (-1)^n \varphi^{n-1} x_n + b,$$

where (Q,+) is a commutative group, φ an automorphism of the group (Q,+), $\varphi b=-b$, $\varphi^{n+1}=\varepsilon$ when n is odd, $\varphi^{n+1}=-\varepsilon$ when n is even, and $\varphi+\varepsilon$ is a bijection, is self-orthogonal.

Some results on the existence of self-orthogonal medial cyclic n-quasi-groups can also be obtained from [10]. These results are given in the next two theorems.

Theorem 5. If $n, v \geq 3$ are odd numbers, then there exists a self-orthogonal medial cyclic n-quasigroup of order v.

If n is an even positive integer, p_1, \ldots, p_m primes and $\alpha_1, \ldots, \alpha_m$ positive integers such that $p_i^{\alpha_i} \equiv 1 \pmod{s_i}$, where $s_i > 1$ is a divisor of n+1, $i = 1, \ldots, m$, then for arbitrary nonnegative integers β_i , $i = 1, \ldots, m$, there exists a self-orthogonal medial cyclic n-quasigroup of the order

$$v=p_1^{\alpha_1\beta_1}\dots p_m^{\alpha_m\beta_m}.$$

Theorem 6. Let $n \geq 2$ be a positive integer and p_1, \ldots, p_s primes such that $p_i > n+1$, $i=1,\ldots,s$. Then there are positive integers k_1,\ldots,k_s , $1 \leq k_i \leq n$, $i=1,\ldots,s$, such that, for all positive integers α_i , $i=1,\ldots,s$ there is a self-orthogonal medial cyclic n-quasigroup of the order

$$v=p_1^{k_1\alpha_1}\dots p_s^{k_s\alpha_s}.$$

3. Medial cyclic *n*-loops

Now we shall consider medial cyclic n-loops.

Theorem 7. Every medial n-loop is commutative.

Proof. Let (Q, f) be a medial n-loop and e a unit of that n-loop. We shall prove that $f = f^{(ij)}$ for every $i, j \in \mathbb{N}_n$.

Since (Q, f) is medial we have the following identity

(6)
$$f(f(\lbrace x_{1i}\rbrace_{i=1}^n), \dots, f(\lbrace x_{ni}\rbrace_{i=1}^n)) = f(f(\lbrace x_{i1}\rbrace_{i=1}^n), \dots, f(\lbrace x_{in}\rbrace_{i=1}^n))$$

If $i, j \in \mathbb{N}_n$, i < j, and if in (6) we replace by e all variables except x_{ij}, x_{ji} and $x_{kk}, k = 1, \ldots, i - 1, i + 1, \ldots, j - 1, j + 1, \ldots, n$, we get

$$f(x_{11},\ldots,x_{i-1,i-1},x_{ij},x_{i+1,i+1},\ldots,x_{j-1,j-1},x_{ji},x_{j+1,j+1},\ldots,x_{nn}) =$$

$$f(x_{11},\ldots,x_{i-1,i-1},x_{ji},x_{i+1,i+1},\ldots,x_{j-1,j-1},x_{ij},x_{j+1,j+1},\ldots,x_{nn}).$$

This means that $f = f^{(ij)}$ for every $i, j \in \mathbb{N}_n$, hence (Q, f) is commutative. \square

Corollary 1. Every medial cyclic n-loop is totally symmetric.

Proof. If (Q, f) is a medial cyclic n-loop, by the preceding theorem it follows that (Q, f) is commutative. Combining this and the cyclicity of (Q, f) we get that (Q, f) is totally symmetric.

Theorem 8. If (Q, f) is a medial cyclic n-loop, then (Q, f) is (1, n)-associative and (i, i + 1)-associative for all $i \in \mathbb{N}_{n-1}$.

Proof. Let (Q, f) be a medial cyclic n-loop and e a unit of that n-loop. Then

$$f(f(x_1^n), f(\stackrel{n-1}{e}^1, x_{n+1}), \dots, f(\stackrel{n-1}{e}^1, x_{2n-1})) = f(f(x_1, \stackrel{n-1}{e}^1), \dots, f(x_{n-1}, \stackrel{n-1}{e}^1), f(x_n^{2n-1})),$$

that is,

$$f(f(x_1^n),x_{n+1}^{2n-1})=f(x_1^{n-1},f(x_n^{2n-1})),$$

hence (Q, f) is (1, n)-associative. (Q, f) is also cyclic and from Theorem 1 of [9] it follows that (Q, f) is (i, i + 1)-associative for all $i, j \in \mathbb{N}_{n-1}$.

Theorem 2 from [9] implies the following corollary.

Corollary 2. Every medial cyclic n-loop is an n-group.

References

- Aczel, J., On mean values, Bull. Amer. Math. Soc., Vol. 54 (1948), 495-550.
- [2] Bennett, F. E., Self-orthogonal semisymmetric quasigroups, J. Combinatorial Theory, Ser. A 33 (1982), 117-119.
- [3] Belousov, V.D., n-arnye kvazigruppy. Shtiintsa, Kishinev, 1972.
- [4] Belousov, V. D., Uravnenie obshchej medial'nosti, Seti i kvazigruppi, Mat. Issledovaniya 39 (1976), 21-31.
- [5] Lindner, C. C., Mendelsohn, N. S., Construction of perpendicular Steiner quasigroups, Aequationes Math. 9 (1973), 150-156.
- [6] Mendelsohn, N. S., Orthogonal Steiner systems, Aequationes Math. 5 (1970), 268-272.

- [7] Radó, F., On semi-symmetric quasigroups, Aequationes Math. 11 (1974), 250-255.
- [8] Stojaković, Z., Cyclic n-quasigroups, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser.Mat. 12 (1982), 407-415.
- [9] Stojaković, Z., Paunić, Dj., On a class of n-groups, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser.Mat. 14(1984), 147-154.
- [10] Stojaković, Z., Paunić, Dj., Self-orthogonal n-quasigroups, Aequationes Math. 30(1986), 252-257.

Received by the editors October 28, 1997.