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Abstract

Measures defined on o-complete lattice and with values in o-com-
plete lattice ordered semigroup, generalized measures in the sense of
Klement and Weber are considered. A Lebesgue decomposition theo-
rem for such generalized measures on lattice with relative complement
is proved.
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1. Introduction

Measures (more generally, additive and exhaustive functions) on distribu-
tive lattice and values in semigroup were introduced and investigated in
the paper [6]. For such measures, a theorem on uniform boundedness and
two theorems on pointwise convergence were proved. On the other hand,
Pavlakos in [8] and [9] has investigated the measures defined on the ring
and o-ring and with the values in a partially ordered semigroup. Recently,
Klement and Weber [5] have introduced generalized measures as measures
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defined on o-complete lattice and with the range as o-complete lattice or-
dered commutative semigroup. It turns out that this notion is very useful
as a unified approach to several concepts of measures: o-additive measure,
probability measures on fuzzy events [14], possibility measures [15], fuzzy
probability measures [4], fuzzy-valued fuzzy measures [5], 0 — L - decompos-
able measure [11] and [7], measures on fuzzy events [5], & - decomposable
measures [5], Stone and W* algebra - valued positive measures [13].

We shall prove in this paper a Lebesgue decomposition type theorem for
the generalized measure with an additional supposition on the domain of
the generalized function. Namely, the considered o-complete lattice in the
domain have to be with the relative complement property.

2. Lattice with relative complement

We take the following notions and notations from [5].

Let (L, A,V,0,1) be a o-complete lattice with smallest and largest element
0 and 1, respectively, and let (S,0,<,0,1) be o-complete, lattice ordered
commutative semigroup with the identity 0 and with the smallest and largest
element 0 and 1, respectively.

Definition 1. A mapping m : L — S satisfying

m(z A y)Om(z V y) = m(z)Om(y),
(Zn)nEN T = Sleljl\)/' m(“"n} = m(VnENz'n),

is called an S-valued measure on L or generalized measure.

For examples see [5].
S-valued measure has the following properties:

(Is) z <y = m(z) < m(y),
(O-d) m(z Vy)=m(z)Om(y) forz Ay =0,

(60-d) m(Vypenr) = supren(0X_,m(zy)) for any sequence (z,,) from L such
that 2, A ¥, = 0 for n £ m.
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Definition 2. A lattice L is called the lattice with relative complement if
for each element x from any interval [a,b] there exits an element y such that

tVy=b and T Ay =a.

The element y is called the relative complement of the element x on the
interval [a, b).

Remark 1.

(i) The complement, in general, is not unique. For example: L = {0, a,b,
¢,1} and the order < is defined so that a,b and ¢ are incomparable.
Then the elements b and ¢ are complements of @ on the interval [0, 1].

(ii) For distributive lattice with relative complement, the complement is
unique for each element. So, for Boolen algebras the complement
always exists and it is unique.

(iii) Each lattice L can be embedded in a lattice L’ with 0 and 1, and in
which each element has a complement (on interval [0,1] ), adding no
more than three elements to L.

Proposition 1. Let L be a lattice with a relative complement. If for the
generalized measure m, for some x € L, m(y) = 0, where y is a relative
complement of x on an interval [a,b], then m(y’') = 0 for any other relative
complement on [a,b].

Proof. Since
m(b) = m(z Vy) = m(z) + m(y) = m(z)

holds, we have
m(@) + m(y) = m(a v y') = m(z V y) = m(z),

B m(@) + m(y’) = m(a).

Since the neutral element in S is unique, we obtain m(y’) = 0.

We shall restrict to relative complements on the interval [0, b].
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3. Lebesgue decomposition

In this section we suppose that S has the properties:

s+ sup A = sup(s + A) (s€8S, ACS),

monotone completeness, i.e., every majorised increasing directed family in
S has a supremum in S, and S is of countable type. We suppose that the
o-complete lattice L is a lattice with relative complement.

We shall need the following

Definition 3. Let m and g be two generalized measures defined on the lat-
tice L and with values in S. m is called g - absolutely continuous, denoted
as m < g, if m(z) = 0 whenever z € L with g(z) = 0.

Let m be with the property:

(a) if for some z € L, m(y) = 0, where y is a relative complement of x on
an interval [0, b], then m(y") = 0 for any other relative complement on [0, b).
Then m is called g-singular on L, denoted as mLg, if for every ¢ € L there
exists y € L, y < z, such that

9(y) = m(u) =0,

where u is the relative complement of y on [0, z].
We shall need the following

Lemma 1. Let m; : L — S, i € I, be an increasing directed family of
generalized measures which satisfy the condition (D):

mi(z A (yv2)) =m((zAy)V(cAz) (z,9,2€L)

or L is a distributive lattice, pointwise bounded on L, i.e. for each z € L
there exists an element a such that

mi(z) < a (i €I).

Then, the function
m(z) = sup{my(z):4i € I}

is a generalized measure on L.
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We have now a version of the Lebesgue decomposition theorem

Theorem 1. Let m and g be two generalized measures such that m satisfies
the condition (a) and g. If m satisfies the condition (D):

m(zA(yVz)=m((zAy)V(zAz)) (z,y,2€ L)

or L is distributive lattice, then there ezxist generalized measures m, and m,
such that )
m=m,O0m,, m. <K g, mylyg.

Proof. The subset
L1 ={y€L:g(y) =0}

is a o-complete sublattice of the lattice L. For the restriction of the gener-
alized measure m on L; we introduce

ms(z) = sup m(z V y).
yel,y

let
Lz = {y € L : ms(y) = 0}.

Then we define

me(z) = sup m(z Vz) (z€L).
z€L2g

We can prove Using Lemma 1 that m, and m, are generalized measures,
and that there exist y € Ly and z € Ly such that forall z ¢ L

ms(z) = m(z Vy) = ms(z Vy)

and
me(z) = m(z V z) = me(z V 2).

Using the last two equalities it is easy to check that thus constructed m,
and m, satisfy the desired conditions.

We have by [2]

Definition 4. A function m : L — G, where (G, +) is an Abelian lattice
ordered group, is called distributive if it satisfies the condition

m(zVyVz)=m(z)+m(y)+m(z)—mxAy)—m(zAz)-

m(yAz)+m(zAyAz) (z,y,2 €L).
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Remark 2. A function m is distributive iff it is modular and satisfies the
condition (D) from Theorem 1.

Theorem 2. Let m and g be two generalized measures. If m is distributive,
then there exist the distributive generalized measures m, and m, such that

m = mUm,, m. g, mslyg.

The proof is analogous to the proof of Theorem 1 using Proposition 1.

Remark 3.

(i) If S is a lattice ordered group, then for a distributive generalized mea-
sure we can assume that the lattice is distributive, without loosing
any information. Namely, we can do this by the results from [9],[10],
factoring a congruence.

(ii) For an orthomodular lattice L and a topological group G the Lebesgue
decomposition theorems were proved in papers [6],[8].
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