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Abstract

In this paper we shall consider certain kinds of singularly perturbed
problems described by quasilinear differential equation of second order
with small parameter multiplying the highest derivative, and the ap-
propriate boundary conditions, so that the solution displayes boundary
layers. The character of the layer is determined by the use of asymp-
totic behavior of the exact solution out of the layer, where the exact
solution is approximated by the solution of the reduced problem. The
ressemblance function for the given problem is determined and used for
the domain decomposition, so that the standard spectral methods can
be applied inside the layer. The spectral approximation for the layer
solution upon the layer subinterval is constructed using monotone it-
erations. The layer subinterval is determined through the numerical
layer length which depends on the perturbation parameter and the
degree of the chosen truncated orthogonal series used for the spectral
approximation.

The error estimate is provided by the use of asymptotic behavior
of the exact solution at the endpoints of the layer subintervals using

" the principle of inverse monotonicity.

The numerical example is included, showing the high accuracy of

the presented method even when a small number of terms is used in the
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truncated orthogonal series, which is the result of the appropriatelly
determined layer subinterval. The results are tested according to the
Chebyshev orthogonal basis.
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1. Introduction

We shall consider a singularly perturbed problem
(1) Ley = —e%y"(z) +b(z,y) =0 0<z <1,

(2) y(0) =0, y(1) =0,
where € € R, 0 < £ << 1 is a small parameter.

The problem (1),(2) represents mathematical model of the large number
of phenomena in sciences such as conduction and diffusion in fluid dynamics,
theory of semiconductors in electronics and catalization processes in chem-
istry and biology. It is of the great interest to describe the behavior of the
exact solution of these problems, especialy inside the layers. Under cer-
tain assumptions, the solution of this problem can display boundary layers,
where the values change extremly rapidly.

Lately, quite a number of authors have tried to solve this kind of problems
numericaly. They have developed two different aproaches in the construction
of the approximate solution: discrete methods and continous methods.

Classical numerical discretization fails when applied to the layer prob-
lems and that difficulty is usualy overcome by the construction of special
grid functions or special discretization schemas.

The authors who use the continous methods mostly use spline technique
or finite element methods combined by the relaxation of the given problem.

In this paper a continous method, based on the use of spectral approxi-
mation will be presented.

In the first part of the paper we shall analyse the assumptions for the ex-
istence of the solution of the given boundary value problem and the asymp-
totic behavior of the solution. In the second part we shall transform the
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original problem addapting it to the application of standard spectral tech-
nique. In the third part we shall determine the appropriate domain de-
composition introducing numerical layer length constructed by the special
procedure which is addapted to the character of the chosen approximation.
In the fourth part we shall apply monotone iterations to construct the se-
quence of spectral approximations which tends to the exact solution of the
problem. In the fifth part we shall estimate the error, and in the sixth part
we shall give a numerical example.

2. Existence and the behavior of the solution

The problem (1),(2) represents the so-called selfadjoint problem, which is
the special case of stiff quasilinear boundary problem

Ty = —e%y"(z) + a(z,y)y (z) + b(z,y) =0, 0<z <1,

Ry = (y(0),y(1)) = (4, B),
where € > 0 is a small parameter, A, B € R, and a(z, y), 3_3’ b(z,y) and g—z
are functions from the space C([0,1] x R).

In [4] it was shown that if
9b(z, y)
dy

the observed quasilinear problem has the unique solution y. € C2[0,1] and
the operator (T:, R) is inverse monotone in the following sence

a(z,y) = a(a), >0,

Tu<Tw, Ru<Rv = wu<w forall u,ve C?¥0,1]

The problem (1),(2) is obtained from the above quasilinear problem for
a(z,y) = 0 and homogenious boundary conditions (A4, B) = (0,0). Thus,
the existence and the unigness of the solution, and the inverse monotonicity
are obtained if the following assumption holds:

(3)by(z,y) = 82 >0, B € R, b(z,y) € C*([0,1] xR), (z,y) €[0,1] x R.

The exact solution ye(z) is from the space C*[0,1] and its asymptotic
behavior is given by

(4) ye(z) = 2(2) + Moe™=% + Mye™ 52 4 Mye?,
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where z(z) represents the solution of the reduced problem b(z, z) = 0 and

2"z
My > |2(0)], My > |2(1)], Mz > % ,

We can se that, in general, the exact solution displays two boundary layers
of order O(g).

€ [0,1].

3. Transformation of the problem

As the boundary layers are of order O(g), we shall approximate the exact
solution y:(z) by

w(z) =z €]0,ce]
(5) u(z) = 2(z) =€ [ce,1— cg]
ur(z) € [1—ce 1]

where ¢ > 0 denotes a constant which choice will be discussed in the next
section.

The function w;(z) represents the left layer solution and it can be deter-
mined as the solution of the problem

(6) Louw(z) =0, w(0) =0, w(ce) = z(ce).

~ The function u,(z) represents the right layer solution and it can be deter-
mined as the solution of the problem

(7 Lou(z) =0, u(0) = 2(1 —ce) , ur(1) =0.

4. Numerical layer length

We shall carry out the procedure for constructing the approximation only
for the left layer solution, and the investigation for the right layer solution
is the same.

The value ¢, which determines the division points ce and 1 — ce can be
determined by the similar technique as in the linear case, for which one can
see [1]. In that purpose we introduce thee following definition:
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Definition 1. A sum of the reduced solution and a function py,(z) € C?[0, ce]
is called a resemblance function for the problem (6) if

1. it satisfies the boundary conditions in (6),
2. T = ce 18 the stationary point for pp,(z),

3. pm(zx) is concave for z(0) < 0 and convez for z(0) > 0.
Now, it is eagy to prove the following lemma:

Lemma 1. The function

ceE—T

®) r(m)=z<w>+pm<m>=z<x>—z<o>( )  meN, m>2.

ce
15 a resemblance function for the problem (6).

Proof. We have to verify the conditions from Defefinition 1.

1. 7(0) = 2(0) — 2(0) (£=9)™ =0

2. pl(z) = = 0) (CE z = 0 only for z = ce.

3. pl (z) = m(mczel)z(o) (e 2)™2 5o that sgnp!l, (z) = — sgnz(0), which

means that p,(z) is concave for 2(0) < 0 and convex for z(0) > 0.

The resemblance function enables us to determine the value ¢ in the
expressin for the division point in such a way that it depends on the degree
m of the truncated orthogonal series, which is going to be used for the
approximation of the layer solution. The value ¢ is obtained from the request
that the resemblance function satisfies the differential equation in (6) at the
layer point x = 0. This will show us how far from the layer point z = 0
are we alowed to go if we want to provide that the approximate solution,
represented as a sum of the reduced solution and truncated orthogonal series
of degree m, resembles the layer solution u;(z).

Thus, the division point should be determined using the result from the
following theorem:
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Theorem 1. The value ¢, which determines the division point ce, is

_ [=2(0)m(m ~1)
Q | c—\/ =l

when € is sufficiently small.

Proof. Introducing (8) into the differential equation in (6) we obtain

—e22"(z) +

m(m — 1)z(0) (ce -z

m—2
= ) + b(z,r(z)) =0.

ce
At the layer point z = 0, with respect to 7(0) = 0, the above equality
becomes

—£22"(0) + M + 5(0,0) = 0.

For ¢ sufficiently small, this will give us the quadratic equation in ¢

—’”—(m_Q—l)'z(()—) +5(0,0) = 0.
c

For 2(0) > 0 the layer solution is convex, ie. y"(z) < 0 for z € [0, c¢], and

from (1) we can see that sgnb(z,y) = sgny”(z). Thus, b(0,0) < 0. If 2(0) < 0

the layer solution is concave, which implies that 5(0,0) > 0. This provides

that the solution of the above equation always exists, and its positive value

is given by (9).

5. Spectral approximation for the layer solution

Now we can proceed to construct the approximate solution for the problem
(6) using monotone iterations combined with the spectral approximation.

We shall construct the solution of the problem (6) in the form

_ z(ce)x
(10) () = un(z) + =

where u,(z) is the n-th iteration of the approximate solution and we shall
represent it as

i 2r
() nle) =3 ol (Z-1),
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Tx(t) = cos(k - arccost), k=0,1,...,

ie. as the truncated orthogonal series of degree m, due to the Chebysev
orthogonal basis. (The notation ‘a; means that the summation involves %
rather than ag.)

In order to obtain the coefficients ag, k = 0,1,...,m we have to trans-
form the layer subinterval [0, c¢] into [—1, 1] first, using the streching variable
t= %—? — 1. Thus, the finit series (11) becomes

(12) wn(t) = axTi(t), te€[-1,1]
k=0

and it represents the n-th monotone iteration for the problem

(13) wll(t) +g(t,w) =0, w(-1) =0, w(l) =0,
where )
g(t,w) = ‘CZ ‘b (%(H— 10t 2y 1)) .

If we assume that the function g(¢, w) is continous on [~1, 1] xR and satisfies

71.2
50

Kl(’U‘—UJ) S g(t,v)—g(t,w) S K?(va)’ vV—w .>_ 07 KlaK2 S R7 K2 S

W

then we can construct the the iteration sequence wy,(t), defined by

(14) wp(t) + Kiwn(t) = Kiwn-1(t) — g(t, wn-1(t)),
wn(=1) =0, wy(1) =0,

starting from the arbitrary function wq(t).

If wy(t) + g(t,wo(t)) <0, te€[-1,1] then wy(t) > w(t) and iteration
sequence converges to w(t) in such a way that w,—1(¢) > wy(t) > w(t), n €
N. The proof can be found in [2].

In purpose to determine the coefficients of the spectral approximation in
each iteration we introduce (12) into (14) and ask that the obtained equation
is satisfied at Gauss-Lobatto nodes t; = cos %’, 1=1,2,...,m—1. We also
introduce (12) into the boundary conditions, which gives us

m
>

k=0

!

m!
(—l)kak = 0, Z ar — 0.
k=0
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That procedure leads to the system of m + 1 equations with m + 1 unknown
coefficients ag, k = 0,1,...,m. The solution of this system determines the
spectral approximation (11).

6. The error estimate

Out of the boundary layer, the exact solution of the problem (1),(2) is
approximated by the solution of the reduced problem. The error estimate
is obtained from (4) and it is given by

-0z —pB{1—x)
(15) lye(z) — 2(z)] < Moe ™" + Mye™ s + Mye?.

Let us now estimate the error upon the layer subinterval (0,ce]. The
error function, according to (5) and (1)-(13) is

(16) d(z) = lye(z) — vn (@) < |te(z) — w(z)| + |w(t) — wa(t)].

In order to estimate the first term we have to prove the following lemma:

Lemma 2. Let b(z,y) € C*([0,cc] x R) and by(z,y) > %, B € R for
z € (0,ce]. Then

(17) le(2) —w(z)] < M(£ +e77) for x€(0,ce],

where M is arbitrary constant independent of z and ¢.

Proof. The function u.(z) satisfies the boundary value problem
(18) Leye(z) =0, z € (0, cel, y(0) = 0, ye(ce) = vo.
Subtracting (6) from (18) we obtain

Le(ye —w)(z) = 0, (ye —w)(0) =0, (ye — w)(ce) = ye(ce) — z(ce).

Under the given assumptions the operator L. is inverse monotone. So, by
the principle of inverse monotonicity we can conclude that ’

(19) lve(z) — w (@) < lyelce) — z(ce)l.
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—8(1—ce)

Using the estimate (15) for z = ce, as e ¢ tends to zero when ¢ is
sufficiently small, we obtain (17).

In order to estimate the second term we use the fact that, starting from
wp(t) = 0, because of g{t,wy(t)) < 0, each iteration wy,(t) represents the
upper bound for the solution of the problem (13). The lower solution wy,(t),
as shown in [2}, represents the solution of the problem

wi(t) + Kown (t) = Kowy(t) — g(t, wn(t)), wn(—1) = w,(1) =0,

which can be determined in the form of the appropriate truncated Chebyshev
series using the standard procedure.

Using these results, we come to the error estimate, which is given by the
following theorem:

Theorem 2. Let wy,(t) represent the lower solution and wp(t) is the n-th
monoton iteration. The error d(z), defined by (16), can be estimated as

2
(&)~ (E )
cE ce

Proof. Using (16),(19) and the inequality wn(t) < w(t) < wy,(t) we
directly obtain (20).

(20) ld(z)| < M(e* + e P¢) +

7. Numerical example

We shall use the following test example:
~e%y" +y* — f(z) =0, y(0) = y(1) =,

with the exact solution

-2z z
ye() = 21l 51 —e) 1
ee —

The difference between the exact solution and the approximate one inside
the boundary layer is given in the following table:
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| m=4 | m=6 | m=8 |
c [ 346 ] 548 | 748 |
1 01 | 07 1.5
n=2 || 0.015 | 0.04 | 0.06
3 ][ 0.004 | 0.008 | 0.014
n=4 | — [0.0017 | 0.0027
n=5 | — — ] 0.0006

The results are given for ¢ = 276, using truncated Chebyshev series of
degree m = 4, m = 6 and m = 8. The calculation is performed in five
iterations.
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