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Abstract

It is proved that the collection of all finite partially ordered sets
with the same poset of meet-irreducible elements is a finite Boolean
algebra, and that every finite Boolean algebra can be represented by
such collection. In addition, we give necessary and sufficient conditions
under which a lattice of all lattices determined by the same poset of
meet-irreducibles is a sublattice of the mentioned Boolean lattice.

AMS Mathematics Subject Classification (1991): 08A30, 08A05
Key words and phrases: partially ordered set, lattice, meet-irreducible

1. Preliminaries

The present paper is based on the well known result of G. Birkhoff [2] by
which there is a one-to-one correspondence between all finite partially or-
dered sets and all finite distributive lattices. Namely, every finite partially
ordered set X is isomorphic to the poset of meet-irreducible elements of a
finite distributive lattice. As it is known, this lattice is, up to an isomor-
phism, the lattice of all order filters of X, endowed with the dual of inclusion
as partial order; the subset of principal filters is order-isomorphic with X.
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Obviously, X can be isomorphic to the posets of meet-irreducibles of
some other, non-distributive lattices, and also to the posets of meet-irreduci-
bles of some finite posets. In the paper [10] it was proved that all these posets
and lattices can be considered as particular subsets of the corresponding
distributive lattice. In fact, in this paper necessary and sufficient conditions
under which a finite partially ordered set and a finite distributive lattice
have isomorphic posets of meet-irreducibles were given.

In the paper [9], the collection £(X) of all finite lattices generated in the
above sense by the poset X of meet-irreducibles was investigated. It was
proved that this collection is a lattice. Necessary and sufficient conditions
under which this lattice is modular, distributive and Boolean were also given.

Representations of some finite lattices by the collection-lattice £{X) were
given in the paper [9]. A part of these investigations was motivated by some
functional representations of finite lattices, given in [7].

In the present paper, the collection C(X) of all finite posets (including
lattices) generated by the same poset X of meet-irreducibles is investigated.
We prove that this collection is a finite Boolean lattice. Such a representation
exists for every finite Boolean lattice. We also give necessary and sufficient
conditions under which £(X) is a sublattice of C(X).

2. Results

An element z of a partially ordered set (P, <) is said to be meet-irreducible,
if it is different from the greatest element, the top (provided that it exists)
and if it satisfies the following condition:

for any y,z € P,ifz =inf{y,z} thenz=yorz ==z
(obviously, z is meet-irreducible also in the case when there are no elements
for which it is the infimum).

Recall that a meet-irreducible element z of a lattice L is the one which
is different from the top element and satisfies the implication:
fr=yAzthenz=yorz=-=z.

Throughout the paper, (P, <) is supposed to be a finite partially ordered
set (finite poset), whose top element, if it exists, is denoted by 1 (or 1p, in
the case when a lattice L is also considered, whose top element is then
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denoted by‘ 17).

The following lemma is a result from the paper [10]. Actually, it proves
that every finite partially ordered set with a given poset X of meet-irreduci-
bles can be considered as a particular subset of a distributive lattice whose
poset of meet-irreducibles is order isomorphic with X.

Let L be a finite distributive lattice for which (Y, <) is the poset of
meet-irreducible elements. Further on, let Y’ be a subset of L constructed
as follows. If y € Y is such that y = infyZ, where Z = {z € Y | y < z}.
(i.e., y is the infimum in Y of the set of all meet-irreducible elements above
it), then, we define ¢’ := A; Z (hence, ¢/ is the meet of the set of all meet-
irreducibles above y, this time in L); if y is the only co-atom in L (i.e., if
L\ {1} is a lattice with the top element y), then let 4/ := 1. Finally, let

(1) Y =YU{aeL|a=y forsomeyecY}.

Lemma 1. [10] 4 finite partially ordered set (P, <) and a finite distributive
lattice L have isomorphic posets of meet-irreducible elements (X and Y,
respectively) if and only if (P, <) is isomorphic to a sub-poset of L which
contains Y' (defined by (1)) O.

Hence, every finite poset (Y, <) generates a collection of partially ordered
sets (some of them are lattices) for which (Y, <) is a poset of meet-irreducible
elements. Namely, each of these partially ordered sets (lattices) is a subset
of the distributive lattice whose poset of meet-irreducibles is (Y, <). Some
of these posets can be isomorphic, under the mapping which extends an
automorphism of the poset Y. On the other hand, (as proved in [10]), every
partially ordered set whose poset of meet-irreducibles is isomorphic to (Y, <)
is embeddable into the corresponding distributive lattice. In the following,
we investigate the above mentioned collection of posets generated by Y.

Let (Y, <) be a finite partially ordered set, L the distributive lattice in
which (Y, <) is a poset of meet-irreducible elements, and C(Y’) a collection
of subsets of L, containing Y’ (defined by (1)) and which are posets under
the order inherited from L i.e., '

C(Y):={PCL|Y' CP,Pisa poset under the order from L}.

It is obvious that C(Y) is a partially ordered set under the set inclusion,
which we denote by (C(Y), C).
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Theorem 1. For any finite poset (Y, <), the partially ordered set (C(Y),C)
s a Boolean lattice.

Proof. We prove that (C(Y),C) is a lattice. There is a top element in the
collection, the distributive lattice L. Further on, C(Y) is closed under the
set intersection. Indeed, if P; and P, are two posets from C(Y'), then Y’ is
a subset of both of them, hence Y’ is contained in their intersection. By
Lemma 1, P; N P, also belongs to C(Y). Thus, (C(Y), C) is a lattice.

This lattice is Boolean, since by Lemma 1, For every subset Z of L\Y’,
Y' U Z belongs to C(Y). Indeed, by Lemma 1 the only condition which a
poset has to satisfy in order to belong to the collection is to be a subset of L
containing Y'. Whence, the lattice (C(Y), C) is isomorphic with the power
set of L\Y'. O

It is possible to represent every finite Boolean lattice by the suitable

collection-lattice, as proved in the sequel.

Theorem 2. Every finite Boolean lattice with more than 2 elements is iso-
morphic to the collection lattice (C(Y),C) of some finite poset (Y, <).

Proof. We give one possible construction of the poset Y, such that (C(Y), C)
is isomorphic to a given finite Boolean lattice.
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a) b)
Fig. 1

For n =2,3,4,..., let (Y, <) be a disjoint union of two chains, with 1 and
n — 1 elements, respectively (Figure 1.a)). The corresponding distributive
lattice in which Y is the poset of meet-irreducibles is represented in Figure
1.b). Being a disjoint union of two chains, the set Y does not contain infima
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of non-comparable elements, hence by (1), Y/ =Y. Further, |[L\Y'| = n.
Hence, the lattice (C(Y'), C) which is Boolean by Theorem 1, has exactly 2"
elements. O

In the papers [8,9] the foregoing problems were discussed for lattices.
Namely, it is proved there that the collection £(Y") of all finite lattices de-
termined by the same poset (Y,C) of meet-irreducibles is a lattice. As in
the present paper, these lattices are taken to be subsets of a distributive
one, whose poset of meet-irreducibles is also (Y, <). Hence, the collection
L(Y) of lattices whose poset of meet-irreducibles is (Y, <) is a subset of the
collection C(Y') of all partially ordered sets with the same property: in each
of them (Y, <) is a poset of meet-irreducibles. As proved in the present
article, (C(Y), C) is always a Boolean lattice, which is not the case with the
lattice (L(Y'), C); this one can be Boolean, but also only distributive, and
even a non-modular lattice. In the following theorem we give conditions
under which (£(Y), C) is a sublattice of the Boolean lattice (C(Y), C).

Recall that an element of a lattice L is reducible if it is not meet,
nor join-irreducible. If Y is a poset of meet-irreducible elements in a finite
distributive lattice L and a € L, then (as defined in [9]) we shall say that a is
Y-independent if it is not in Y, nor it is a meet of elements from Y which
are greater than an y € Y, nor it is a join of meet-irreducible elements.

Fig. 2
The following lemma is a result from the paper [9].

Lemma 2. [9] (£(Y),C) is a distributive lattice if and only if the distribu-

tive lattice L from the collection does not contain an 'Y -independent reducible
element, which is a join of other Y -independent elements. O

Remark. The ”if part” of the proof of the above proposition is based on
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the fact that the join in (£(Y'), C), under the assumed conditions, coincides
with the set-union.

Theorem 3. Let (Y, <) be a finite poset and L the distributive lattice whose
poset of meet-irreducibles is (Y, <). Then the lattice (L(Y'), C) is a sublattice
of the lattice (C(Y),C) if and only if L does not contain an Y -independent
reducible element which is a join of other Y -independent elements.

Proof.
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Fig. 3

If (L(Y),C) is a sublattice of (C(Y),C), then obviously the former is
distributive and by Lemma 2 the foregoing condition is satisfied. On the
other hand, if this condition is satisfied, then by the above remark, the join
in (L(Y'), C) is defined by the set-union, which is also the case in (C(Y'), C).
Since the meet is the set-intersection in both lattices, it follows that (£(Y),C
) is a sublattice of (C(Y),C). O :

Example. The finite poset Y is the poset of meet-irreducibles of the dis-
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tributive lattice L (Fig. 2). All partially ordered sets for which Y is the
poset of meet-irreducibles are considered to be subsets of L. The collection -
(C(Y'), C) of these posets is a Boolean lattice (Fig. 3).

Note that there is no non-trivial automorphism on the poset X. Hence,
C(Y') consists of all, up to the automorphism different partially ordered sets
for which X is a poset of meet-irreducibles. Further, there are two lattices
in the collection. In Figure 3 they are denoted by L and L;. Since L satisfies
conditions of Theorem 3, (£(Y'), C) is a (two-element) distributive sublattice
of (C(Y),C).
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