Novi SAD J. MATH. 187
VoL. 28, No. 2, 1998, 187-205

AN APPROACH TO AGENT IMPLEMENTATION
USING JAVA

Mihal Badjonski, Mirjana Ivanovié¢, Zoran Budimac
Institute of Mathematics, University of Novi Sad
Trg D. Obradoviéa 4, 21000 Novi Sad, Yugoslavia
email:{mihal, mira, zjb}@unsim.ns.ac.yu

Abstract

Autonomous agents represent a new field in computer science. Agent
approach is suitable for building complex distributed software systems.
The paper presents design of new agent-oriented programming lan-
guage Lass and its implementation as a Java package aimed for agent
programming. The package significantly reduces time needed for agent
programming.

AMS Mathematics Subject Classification (1991): 68N20
Key words and phrases: software agents, Java, agent-oriented program-
ming

1. Introduction

The concept of an agent has become nowadays important in artificial intel-
ligence (AI). There are two general uses of the term ’agent’: a weak notion
of agency and a stronger notion of agency.

A weak notion of agency determines term agent as hardware or (more
usually) software based computer system that enjoys the properties [11]:

e autonomy: agents operate without the direct intervention of humans
or others, and have some kind of control over their actions and internal
state;

188 M. Badjonski, M. Ivanovié, Z. Budimac

e social ability: agents interact with other agents (and possibly humans)
via some kind of agent-communication language;

e reactivity: agents perceive their environment (which may be the phys-
ical world, a user via a graphical user interface, a collection of other
agents, the INTERNET, or perhaps all of these combined), and re-
spond in a timely fashion to changes that occur in it;

e pro-activeness: agents do not simply act in response to their environ-
ment, they are able to exhibit goal-directed behavior by taking the
initiative.”

A stronger definition of an agent determines it as [11]: ”... a computer

system that, in addition to having the properties identified in the definition

of weak agent, is either conceptualized or implemented using concepts that
are more usually applied to humans (knowledge, obligations, beliefs, desires,
intentions, emotions, human-like visual representation, etc.).”

Multi-Agent systems (MAS) are a new, but extremely appealing field
in computer science. They are usually classified as a field of distributed
artificial intelligence. MAS is a system compound of at least two agents.

Agent-oriented programming languages are programming languages de-
veloped for the programming of agents. Agent-oriented programming (AQOP)
can also be seen as a post- object-oriented paradigm. AOP introduces new
concepts such as mental categories, reactivity, pro-activeness, concurrent
execution inside and between agents, communication, meta-level reasoning,
etc.

This paper presents an approach to agent implementation using concepts
of a new agent-oriented programming language Lass. Agent programmed
with Lass possesses intentions, beliefs and plans for its public and private
services. Besides deliberative properties, agent specified with Lass can be-
have reactively as well. Lass introduces the usage of reflezes - programming
primitives enabling agent to react immediately when it is necessary. Lass
enables communication between agents which is based on agent public ser-
vices. Services are used similarly like remote procedure calls. They can be
used for the implementation of speech-acts. Sending of a speech-act per for-
mative can be implemented as a request for a service execution. A similar
method is used in {10].

Basic concepts of Lass are implemented as classes in programming lan-
guage Java (appropriate package) suitable for agents implementation. Classes

An approach to agent implementation using Java 189

are organized in the package LassMachine. They are general enough to be
used for implementation both weak and strong agents.

The paper is organized as follows. The architecture of agents pro-
grammed using presented package is given in the next section. The first
part of third section is aimed to briefly introduce the language Lass and its
main properties. The Java package LASSMachine is described in the rest
of the third section. Possible applications of the package as well as some
directions for further work are given in the fourth section. Related work and
a conclusion are given in the last section.

2. The Main Parts of Agent

Since there are many notions of agents, it is impossible to make universal
programming tool that will be useful in the programming of every agent. The
Lass language and Java classes, implemented to simulate Lass properties, are
suitable for the implementation of agents satisfying following requirements:

e static agents (they do not migrate over the network),

e software agents (as opposed to hardware agents) !,

e persistent agents (this feature is common to most agents).

As it can be seen in the Fig. 1, an agent programmed using developed
package possesses its beliefs about facts (which can be of various types,)
intentions, public and private services, a special service named webService,
plans, reflexes, and meta capabilities.

Agent is able to execute its services. The service instances that are
currently executing are called intentions. Service execution can be invoked
in three ways:)

e an intention invokes the service execution,

e an active reflex may also invoke the execution of some service (see
below for explanation of reflexes,)

e another agent in the system may ask the agent for the particular public
service execution and this message can (but does not have to) invoke
the execution of the required service.

'Hardware agents could also be programmed using this Java package provided that
Java language is extended with constructs corresponding to robot actions.

190 M. Badjonski, M. Ivanovié, Z. Budimac

intentions
public services
private services
webService
plans
reflexes

beliefs about facts
fact types

meta capabilities

Figure 1: Parts of an agent.

webService is the special service that enables its agent to be accessible
through the World Wide Web. Every agent has an Internet address. One
can use an Internet browser to communicate with agent and to ask execution
of offered tasks.

To every service exactly one plan is attached. Service execution corre-
sponds to execution of its plan. Plan consists of actions to be performed.

Agent has its internal state consisting of its beliefs about some facts and
of meta-level information about its intentions and active reflexes.

Reflexes are similar to services. While services represent proactive, goal-
directed constructs, reflexes represent reactive ones. Reflexes have their
priority and conditions for activation. Whenever there is at least one active
reflex, the active reflex(es) with highest priority are executing.

3. LASS Language for Agent-Oriented Software Sys-
tems

3.1 LASS Language

Every program written in Lass is intended for the specification of exactly
one agent. The main part of the Lass syntax and the description of the
syntax categories are as follows.

program =

An approach to agent implementation using Java 191

’AGENT’ agent_name ’;°’
[known_agents_decl ’;’]
[fact_types_def ’;°’]
[facts_decl ’;’]
[public_services_decl ’;’]
[private_services_decl ’;°]
[reflexes_decl ’;’]
[init_beliefs ’;°’]
[init_intentions ’;’]

’END’ agent_name

The agents that will communicate with the agent are specified in the
first part. The agent can ask services from each of these agents and it can
be asked for service by each one of them. The facts important to agent and
their types have to be declared. Agent can perform public services and its
private services as well. Agent can possess reflexes. They monitor the agent
beliefs and use them to activate or deactivate themselves.

At the beginning of its existence, agent can have initial beliefs about the
facts in its environment and it can also have initial intentions.

3.1.1. Other agents
- are specified (declared) using the following structure:

known_agents_decl =

’KNOWN’ ’AGENT’ agent_decl {’;’ agent_decl}
agent_decl =

agent_name ’:’ (internet_adr | ’LOCAL’)

Example:

KNOWN AGENT
Tom : alfa.becd.com:2009 ;
James : LOCAL;

The agent cooperates or competes with other agents in multi-agent sys-
tem. Data about other agents have to be enlisted in the first part of the agent
program. An agent in the system can be located on the remote machine, or
it can be executed on the same machine where the agent is executing. In
the former case the Internet address is used in the declaration of the remote
agent (host name and port number), while in the latter case the keyword
’LOCAL’ is used.

192 M. Badjonski, M. Ivanovié, Z. Budimac

3.1.2. Facts

- have their types defined as follows:

fact_types_def = ’FACT’ ’TYPE’ ftype_def {’;’ ftype_def}
ftype_def = ftype_name ’=’ ftype
ftype = prim_type | record_type | array_type

Example:

FACT TYPE

yearType = INTEGER;

string = ARRAY [0..30] OF CHAR;

person = RECORD
firstName, lastName : string;
year0fBird : yearType;
savings : real

END;

Fact can be of a primitive type (standard type), a record, or an array.
Fact types are used in facts declaration:

facts_decl = 'FACTS’ fdecl {’;’ fdecl}

fdecl = fact_names ’:’ ftype_name

fact_names = fname {’,’ fnamel}
Example:

FACTS

Bil, Lisa : person;
isWindowOpened : BOOLEAN;

Facts are used as variables in traditional languages, and represent agent
beliefs. Besides user-defined facts, meta-level facts CURRINT and CURRREF
are also available. They contain information about current intentions and
currently executing reflexes.

3.1.3. Public services

- are declared as follows:

An approach to ageﬁt implementation using Java 193

public_services_decl =
'PUBLIC’ ’SERVICES’ serv_decl {’;’ serv_decl}

serv_decl = serv_name ’(’ [par_decl {’;’ par_decl}] ?)7’;’
[incompatible_services]

(?’ALWAYS’ | ’WHEN’ bool_expr ’;’)

[local_facts_decl]

"PLAN’

body

END’ serv_name
Example:

PUBLIC SERVICES

reserveTicket (request : reservationRequestType;
VAR done : BOOLEAN);
INCOMPATIBLE WITH reserveTicket, modifyTimeTable;
ALWAYS;
LOCAL FACTS
r : reservationType;
PLAN

// making a reservation if possible
END reserveTicket;

cancelReservation(reservIinfo : reservationInfoType);
ALWAYS;
PLAN

// canceling the reservation

END cancelReservation;

Service can contain parameters of input or input-output type (VAR pa-
rameters). par_decl represents the declaration of parameter(s). It consists
of parameters’ names optionally preceded with the word VAR - and followed
by the type of parameter(s). Service will not be performed if bool_exp in
WHEN condition is not satisfied. Service execution is postponed until there
are no incompatible intentions. Every service has its plan for its execution.

bool_expr =

194 M. Badjonski, M. Ivanovié, Z. Budimac

>TRUE’ | FALSE’ | ’(’ bool_expr ’)’ | test_service |
term relation term | ’NOT’ bool_expr |
bool_expr (PAND’"| ’0OR’) bool_expr

test_service is a special type of private service that returns logical value
"TRUE’ or ’FALSE’ after its execution.

body = action {’;’ action}

action =
communicative_action |
service_action |
loop_action |
cond_action |
modify_fact_action |
input_output_action

In addition to constructs from procedural programming languages Lass
possesses special communicative primitives characteristic for the AOP lan-
guages.

communicative_action = ask_service_wait | ask_service
ask_service_wait =

’SENDWAIT’ serv_name ’(’ [params] ')’

"TO’ agent_name ’'REPORT’ ’IN’ rep_fact_name
ask_service =

'SEND’ serv_name ’(’ [params] ’)’

'TO? agent_name ’STATUS’ ’IN’ stat_fact_name

Example:
productID := ’car439’;
creditCard := ’Visa’;
creditCardNo := ’'875648967853453’;
deliveryAddress := ’...’; //delivery address

‘SENDWAIT buyProduct(productld, creditCard, creditCardNo,
deliveryAddress, isOK)
TO car_seller REPORT in servResult;
IF (servResult = DONE) AND isOK THEN

Communication is used when an agent requires service execution from
another agent. Agent that asks the service may stop the execution of the
action sequence while remote service is being performed or it may continue

An approach to agent implementation using Java 195

to perform its actions. Agent can have several intentions and/or reflexes ac-
tive simultaneously. If it uses remote service with wait, only one plan/reflex
will be paused (the one that asks for remote service), while other will con-
tinue to execute. Report and status of the service can have the follow-
ing values: ’DENIED’, ’DONE’, ’PRIVATE’, ’BAD_TYPES’, ’UNKNOWN SERVICE’,
'UNREACHABLE_AGENT’, *UNKNOWN_AGENT’, *BAD_RESPOND’. Status can have two
additional values as well: ’EXECUTING’, and ’NOT_STARTED_YET’.

service_action = service_wait | service

Agent can execute its services, both public and private, in two ways.
The plan or reflex that invoked the service may continue to execute simul-
taneously with the new service or it may wait until the service finish its
execution. Like with remote services, service is accompanied with report
(service_wait) or status information (service).

3.1.4 Private services

- are declared similarly as public services:

private_services_decl =
’PRIVATE’ ’SERVICES’ pri_serv_decl {’;’ pri_serv_decl}
pri_serv_decl = test_serv_decl | serv_decl

Unlike the public services, private services are visible only to the agent
that executes them. Another difference between private and public services
is that private service can return a BOOLEAN value (like function in Pascal).

3.1.5. Reflexes

- are declared as follows:

reflexes_decl = ’REFLEXES’ ref_decl {’;’ ref_decl}
ref_decl =
ref_name ’;’ { ’PRIORITY’ integer ’;’]
*ACTIVATE’ ’'WHEN’ bool_expr
[local_facts_decl]
’BEGIN’ body 'END’ ref_name

Example:

REFLEXES
correctPrices; PRIORITY 1;

196 M. Badjonski, M. Ivanovié, Z. Budimac

ACTIVATE WHEN currencyRateChanged
LOCAL FACTS

i : INTEGER;

BEGIN
FOR i := 1 TO itemNum DO
 item[i].price := item[i].index * rate
END;

currencyRateChanged := FALSE;
END correctPrices;

Reflex activation depends on the truth-value of bool_expr defined in ’AC-
TIVATE’ *WHEN’ part of the declaration. When bool_expr is true, the reflex
will be activated. There can be several reflexes active at the same time.
However, only the active reflexes with the highest priority (lowest INTEGER
number) are executed, while other active reflexes are paused. By default,

reflex has the highest priority.

3.1.6. Initial beliefs and intentions

- are specified in the following structure:
init_beliefs = ’BELIEFS’ ’INITIALIZATION’ body

Example:

BELIEFS INITIALIZATION

myStreet := ’Trg Dositeja Obradovica’
numOfMovies := 100;
movie[1] .name := ’From Dusk till Dawn’;

body should be used for the assignment of values to various facts.

It

is executed only once, at the beginning of agent life. Facts that are not

initialized have an unspecified value.

init_intentions =

>INITIAL’’>INTENTIONS’ intention {’;’ intention}
intention = serv_name ’(’ [params] ’)’
params = par {’,’ par}

Example:

An approach to agent implementation using Java 197

INITIAL INTENTIONS
EXECWAIT checkStockMarket();
EXEC interfaceService();

Initial intentions are specified as a list of services that have to be per-
formed at the beginning of agent existence.

3.2 LASSMachine - Java Package

Considering given objective to implement LASS language, a set of different
Java classes has been developed and organized as the package LASSMachine.
The most important classes of the package are given in Fig. 2. Some of
them closely relate to the main parts of agent showed in Fig. 1.

Figure 2: Some classes for Lass implementation

1. agentRMI - Java 1.1 API introduced remote method invocation, that
provide the means for high-level communication between remote appli-
cations. This powerful tool was used for the communication between
agents. Interface agentRMI declares the methods that can be invoked
remotely.

Messages between agents are requests for service executions. When
agent A wants agent B to perform particular service on some data then
agent A remotely invokes B’s receiveSerivceCall with appropriate
input data. After receiving a request for service execution, agent B

198

M. Badjonski, M. Ivanovié, Z. Budimac

asks for confirmation of the request, executing A’s confirm method.
This step is necessary due to security of the system. After the A’s
confirmation and B’s execution of the service (or its rejection), agent
B remotely invokes A’s receiveAnswer method with the result of the
service execution (or the explanation for the rejection of execution).

agent - The class that implements interface agentRMI is agent class.
Besides three methods declared in the interface this class has many
auxiliary methods. Most of them simply pass their arguments to the
appropriate methods of appropriate manager object. agent has a con-
structor which creates instances for all managers and initializes static
methods and variables in the class typesManager.

Methods receiveSeriviceCall, confirm and receiveAnswer invoke the
methods with the same names in serMan (which is an instance of
serviceManager).

typeClass - Every fact in agent beliefs has its type. Direct usage
of Java types for facts would cause a limitation in agent communi-
cation, because remote method can only accept actual parameter of
the same type as is the type of the corresponding formal parameter.
This means that both agents involved in communication would have
to have exactly the same definition of the parameter type. This draw-
back is overcome introducing a special class, typeClass, whose objects
describe types. Actual parameter for remote method execution is com-
pound of fact and its type (typeClass objects).

There are eight standard types available: integer, real, boolean, char,
string, input-file, time, and output-file. Beside them, array and
record types can be defined.

This class has three constructors. Depending on what kind of type the
object represents (standard, array, or record), appropriate constructor
will be used. Every type has its name and its code.

typesManager - typesManager class contains information of types which
agent knows. This class has three methods. Method init initialize a
hash table and puts into the table typeClass instances representing
eight standard types. Two additional methods add and get types
into/from the hash table. All the variables and methods of this class
are static. No instance of this class should ever be created.

An approach to agent implementation using Java 199

5. fact - Belief about some fact of an agent is represented as an object of
the class fact. Every fact has its type and a value, which depends on
a type.

This class has several constructors. Which one will be used depends
on type of the fact. Due to types there are also many methods for
setting a new value and getting the current value.

Method clone returns a new instance of the same fact. Method write
stores the fact into given file, while static method read reads the fact
from a file and returns it. If the fact is an array of character, method
toString can be used for obtaining the string representation of that
array. Method fromString does the opposite. It copies the characters
from a given string into the fact, which is an array of characters.

6. beliefsManager - Instances of beliefsManager class maintain beliefs
about facts. Beliefs can be global or local in services and reflexes.
Instance of this class that maintains global beliefs has its variable
previous set to null. Instances for local beliefs have as previous
beliefsManager set the reference to the instance for global beliefs. This
ensures a correct scope of names in agent. Local name can be the same
as a global one and then only the local name is visible. In case that
the name is not found in the local instance of beliefsManager, it will
be searched in the previous instance (global names). Every instance
has its hash table where the facts are placed. The key for putting fact
in the hash table is the name of the fact.

7. inputOutputManager - Agent communication with its user is im-
plemented through inputOutputManager class. Agent has its window
where communication with its user occurs. Various types of input-
output actions can be achieved using different methods.

8. knownAgentsManager - References to remote agents are maintained
by the instance of knownAgentsManager class. They are placed in the
hash table using their URLs as keys. Every agent at the beginning of
its existence introduces all other agents in the system it will communi-
cate with. It does that using introduce method of a knownAgentsManager
instance. This introduction may fail due to later initialization of some
remote agent. When existing agent tries to obtain the reference to
an agent which does not exists, it will not succeed. In such case, the
agent will postpone the introduction of the remote agent until the ref-

200

10.

11.

‘M. Badjonski, M. Ivanovié, Z. Budimac

erence is really needed. When the agent wants to ask service execution
from remote agent, it will use get method of its knownAgentsManager
to obtain the reference to remote agent.

. servicesManager - Every agent has exactly one servicesManager in-

stance. This class has two hash tables as its variables. One for agent
services definitions and one for data about current execution of services
invoked by this agent (both local services and remote services). When
agent wants some service to be performed it invokes startService
method of its servicesManager. The data about service execution are
hold in the currentCalls hash table. Method startService uses re-
mote method invocation to invoke receiveServiceCall method of the
agent that should execute the service. The executing agent can be
some other agent (remote) or the same agent that asked the service.
The receiveServiceCall of executing agent will invoke the method in
its servicesManager instance with the same name - receiveServiceCall.
After performing some security steps, this method will find the service
definition in the myServices hash table and start its execution with
received parameters in separate thread. After the execution of the
service, VAR parameters will be returned to the first agent, using its
receiveAnswer method. This method will invoke the method with the
same name in the local servicesManager instance.

timeManager - It enables agent to be ‘aware’ of time. The class has
two useful methods. The first one obtains current time and date (as
a fact of type time). The second one is aimed for delayed service
execution. Using this method, a service will execute at specify time
and date, instead of immediately.

intentionsManager - All service instances that are currently executing
in an agent are called the intentions of the agent. Data about inten-
tions are hold in the hash table intentions. For every service that
is executing the hash table contains its name and the number of its
instances that are executing. Agent can use this meta information in
its services and reflexes. Another important role of intentionsManager
is the synchronization of services. Some services might be unable to
execute while some other services are executing. In that case agent
has to defer the start of new service until the incompatible services
finish their execution. This waiting is performed in the addIntention
method of this class.

An approach to agent implementation using Java 201

12. reflexesManager - Every agent has one instance of the reflexesManager
class. Reflex is a sequence of actions that is performed when its con-
ditions for activation are satisfied and there is no active reflex with
higher priority at the moment.

The activate method of the instance of this class is executing (endless
loop) in a separate thread. Every iteration of the main loop of this
method corresponds to the following steps: a) selects reflex(es) for
execution; b) execute them in the separate threads; c) wait for the
end of all threads.

Variable state is used for meta-capabilities of agent. It enables agent
to know which reflexes are currently executing. It also blocks these
queries when the activate method is at the beginning or at the end
of its iteration, i.e. while the change of current reflexes is occurring.

13. webServiceManager - webServiceManager enables agent to be accessi-
ble via the World Wide Web. Whenever one accesses the agent through
an Internet browser, one instance of the webService is performed. This
service is similar to other agent services. It only differs in its input-
output actions, because the output action results in a HTML page.
When there is a need for user input, an HTML form is generated and
sent.

The LASSMachine package is implemented in the Sun’s Java 1.1.6 for the
Microsoft’s Windows 95 operating system. However, since Java is a platform
independent language, the package can be used on other operating systems
as well. The package consists of forty-eight classes and three interfaces.
Nevertheless, only six classes from the package should be used for agent
programming: :

® agent,

e typeClass,

e fact,

® service,

® webService, and

® reflex

202 M. Badjonski, M. Ivanovié, Z. Budimac

The remaining classes and interfaces are used for the creation of the
above classes.

Classes service, webService, and reflex are abstract classes. Every
agent service is implemented as a class that extends service class. Similarly,
agent web-service is implemented as a class that extends webService class,
and every agent reflex is implemented as a class that extends reflex class.

The package LASSMachine implements an agent architecture. When the
six above classes from the package are used, a programmer concentrates only
on domain dependant parts of the agent application, because the skeleton of
the agent is already implemented in LASSMachine. Usage of LASSMachine does
not prevent programmer from using another Java classes from both standard
and user-defined Java packages. These classes can be used for programming
of agent services plans, agent web-service plan, and for the programming of
actions that reflexes perform.

4. Possible Applications

The Java package LASSMachine is suitable for the development of many multi-
agent systems. Availability of Java API for most of the operating systems
makes this package even more beneficial.

Advantages of the package can be especially evident when it is used for
the development of complex distributed software systems. These advantages
stem from the agent- oriented principles that are embedded into this software
tool. Agent approach is based on decentralization of the system. Agents
are autonomous components with the tractable complexity, while overall
system complexity can be unmanageable if a centralized system organization
is used. The complexity of the multi-agent system is overcome using agent
communication.

For example, as described in {3], a tool such is this package can be used
for the development of global software system for travel ticket reservations.
It would consist of agents located at travel facilities such are airports, sea-
ports, train stations, and bus stations. Besides these agents, every place
where people live would have its own agent. These later agents would be
organized into hierarchy depending on the size of their place and their ge-
ographical position. They would be superior to the agents placed at local
travel facilities. As described in [3], using simple parallel algorithm, the sub-
optimal journey satisfying given preferences can be found for any traveling
between two places. Ticket reservations for all parts of the journey can also

An approach to agent implementation using Java 203

be easily achieved. .

Another example is given in [4], where multi-agent system consisting
of personal digital assistants for appointment schedule is described. Each
agent (personal digital assistant) is devoted to one person in some organi-
zation. When agent user wants to make an appointment with someone who
also has his/her agent, the negotiation is left to its agent(s). Agent beliefs
includes information about its user available time (with various degrees of
availability) and the individual importance of other people to the user.

The package LASSMachine can also be used for the programming of com-
plex systems that are placed on single computer. For example an expert
system can be modeled and specified as a multi-agent system [1]. After
the identification of the main components (agents) of an expert system, the
package can be used for the programming of individual agents.

5. Related Work and Conclusion

Many agent-oriented programming languages have influenced the creation
of the package LASSMachine. However, we believe that described package
and corresponding high-level language (Lass) possess a unique combination
of agent features.

The agent-oriented language [9) AGENTO has introduced agent-oriented
concepts in programming and therefore it influences this package as well as
it influences any other software tool used for programming of agents based
on stronger notion of agency.

Some ideas used in the language AgentSpeak [10] has been used in the
development of the package LASSMachine. However there are also some dif-
ferences in concepts used. For example in AgentSpeak there can be many
plans for service execution, while there is only one plan for a service in our
approach. AgentSpeak allows non-deterministic actions to be performed,
while this non-determinism is not present in LASSMachine agents. We be-
lieve that this modifications increases the readability and the reliability of
agent program.

None of the other known software agent tools possesses constructs for
agent reactivity such are reflexes. The use of reflexes is improved by be-
havioral approach to artificial intelligence which is developed at MIT. Iis
creator, R. Brooks [5], [6], [7] has developed many simple robots that are
able to perform complex tasks. Brooks proposes Subsumption Architecture
for the organization of reflexes. Reflexes in LASSMachine agent are organized

204 M. Badjonski, M. Ivanovié, Z. Budimac

in the similar manner.

The combination of deliberative agent architecture and reflexes is pro-
posed in [8], for the programming of animated agents in computer anima-
tions.

This paper presents a Java package which is aimed for the implemen-
tation of multi- agent systems. This software tool implements some ideas
from agent theory and thus enables high level agent programming instead
of building agents from scratch.

The classes in the package are general enough to be used in various agent
applications, but they are still enough effective to release the programmer
from many hours of low-level programming.

References

[1] Badjonski, M., Ivanovi¢, M., Multi-agent system for determination of
optimal hybrid for seeding, Proceedings of EFITA '97 - First European
Conference for Information Technology in Agrlculture Copenhagen,
Denmark, June 15-18, 1997, 401-404.

2] Badjonski, M., Ivanovié, M., Budimac, Z., Agent-oriented programming
language Lass, Proceedings of COTSR, United Kingdom , 1998.

(3] Badjonski, M., LASS in action, Proceedings of PRIM’97, Pali¢, Yu-
goslavia, September 1997, 1-10.

[4] Badjonski, M., Ivanovié, M., Budimac, Z., Software specification using
LASS, Proceedings of Asian’97, Lecture Notes in Computer Science
Vol-1345, Springer-Verlag, Kathmandu, Nepal, December, 1997, 375-
376.

[5] Brooks, R.A., A robust layered control system for a mobile robot”,
IEEE Journal of Robotics and Automation, 2(1) (1986), 14-23.

[6] Brooks, R.A., Intelligence without reason, Proceedings of the Twelfth
International Joint Conference on Artificial Intelligence (IJCAI-91),
Sydney, Australia, 1991, 569-595.

[7] Brooks, R.A., Intelligence without representation, Artificial Intelli-
gence, 47 (1991), 139-159.

An approach to agent implementation using Java 205

[8] Costa, M., Feijo, B., Agents with emotions in behavioral animation,
Computers & Graphics, Vol. 20, No 3, 1996, 377-384.

[9] Shoham, Y., Agent-oriented programming, Artificial Intelligence,
60(1):51-92, 1993.

[10] Weerasooriga, D., Rao, A., Ramamohanarao, K., Design of a concurrent
agent-oriented language, Intelligent Agents, Lecture Notes in Artificial
Intelligence, Vol 890, Springer-Verlag, 1994, 386-401.

[11] Wooldridge, M., Jennings, N.R., Agent theories, architectures, and lan-
guages: A survey, Intelligent Agents, Lecture Notes in Artificial Intel-
ligence, Vol 890, Springer-Verlag, 1994, 1-39.

Received by the editors December 16, 1998.

