NOVI SAD J. MATH 11
VOL. 28, NO. 3, 1998, 11-19

DESIGN AND IMPLEMENTATION OF THE QUERY
LANGUAGE INTERPRETER FOR BIBLIOGRAPHIC DATA
RETRIEVAL

Igor Fisl', Zora Konjovi¢', Dusan Surla

'Faculty of Engineering, Trg D. Obradovi¢a 6, 21000 Novi Sad, Yugoslavia
*Faculty of Science, Trg D. Obradoviéa 4, 21000 Novi Sad, Yugoslavia

Abstract. This paper presents the object oriented specification of
the query language for bibliographic data retrieval as well as its
implementation. Implementation is done as Internet client
application using programming language Java.

1. Introduction

The basic functions of the Library information system are: forming
bibliographic data, librarian's reporting and documentation, usercs retrieval,
circulation of the bibliographic documentation and defining the processing and
retrieval standards [1].

The query interpretation appears as a subfunction of the user's retrieval and
bibliographic data forming process. Creation of the document database and
index database upon which retrieval process is running ‘is described and
implemented in [3]. Specification and implementation of the client side
application supporting bibliographic data forming and retrieval is given in [4].
This client application supports issuing queries for text server and receiving the
answers in the network environment. Based on issued query, the server forms
new record or retrieves existing records in bibliographic database.

The central part of this paper is concemed with query processing and
communication with the server. These functions are implemented as the client
application in Java programming language. Implementation of the server
supporting indexing and retrieval is based on the Oracle database management
system and its ConText Option.

In order to make understanding this text easier for, we shall define some basic
specific terms: document, record and bibliographic data. The term document

12 LFisl at al.

denotes a source bibliographic unit (book, journal, etc.). The record is set of
data describing a particular document. Bibliographic data is a set of records.

2. The Query Language

The query language in this system is the one similar to the language used in
DIALOG system, as it has world-wide application in the systems for
bibliographic data retrieval [1]. This language supports two basic query types,
each of them allowing subvariants. The first query type is select type with
subvariants select, selects and selectc. The second one is expand type with
subvariants expand and expandd. Within these statements the logical and
proximity operators are allowed.

In the bibliographic database the document is represented by its identification
and set of prefixes representing the attributes of the document (e.g., name of the
(group of) author(s), document title, publication year, publisher, etc.). Each
prefix is characterized by its contents called descriptor. The documents in the
database are indexed by the descriptors of all prefixes.

2.1 select type Queries

All subvariants of this query type return as the result identifications of the
documents satisfying retrieval conditions (hit documents). The simplest
subvariant is select. This subvariant returns identifications of all documents
satisfying the query condition.

A little bit more complex query type is the selectc type. This type, just as a
select type, returns identifications of hit documents, but it additionally
supports range of the hit documents (for example: only the identifications of the
first four hit documents will be returned).

The conditions within query can be connected with logical operators. Each part
of the query that is connected to other with logical operator is called term. The
selects type query, in addition to the identifications of the documents
satisfying the "whole" condition, returns the identifications of the documents
satisfying each of the terms within the condition. '

2.2 Expand Type Queries

The expand type query allows only terms to appear as condition. These terms
are categorized either as qualified or unqualified. The term is qualified if the
prefix of the descriptor that should contain the term is specified. The term is
unqualified if the prefix of the descriptor that should contain the term is not

Desing and implementation of... 13

specified. Because the retrieval is camried out in a consistent manner, an
unqualified term is qualified by all prefixes of the basic index type.

The expand subvariant of this query type allows the condition containing only
unqualified term. This statement returns descriptors of the prefixes satisfying
the query.

The statement expandd, similarly to statement expand, retums the
descriptors of the prefixes satisfying the query. Only qualified terms are allowed
within the condition in this statement. .

2.3 The Conditions in the Queries

The queries are constructed of terms connected with logical operators. These
operators are and (conjunction), or (disjunction) and not (negation). The
qualified terms in queries are qualified depending on the type of the prefix
index by which the term is qualified. If the prefix index type is the basic one,
the term is qualified in following manner:

term / <prefix>

If the prefix index type is the additional one, the term is qualified in following
way:

<prefix> / term

The wildcards within term are also allowed. The symbol replacing arbitrary
string is *, while the symbol replacing the single character is ?. The following
examples illustrate usage of the wildcards.

select AU="p*"

returns identifications of all the documents containing in the descriptor of its
AU prefix any word starting with the character P.

selects AU="P*" and "M*"/TI

This query returns identifications of the documents containing in the AU prefix
descriptor any word starting with the letter P, the documents containing in the
TI prefix descriptor any word starting with the letter M and the documents
satisfying conjunction of these two queries.

expandd "M*"/TI

14 LFi8l at al.

returns the contents of the prefix TI descriptors containing the words starting
with letter M. :

3. Object Oriented Specification

This paper describes object oriented specification of the client side application
supporting the following global functions:

s receiving the query from the user;
checking syntax and semantics of the query;,
translating the query into the text server understandable form;
sending the translated query to the server through the network;
accepting and displaying the query results from the server.

The specification is done by using UML (Unified Modeling Language) [5,6].
The class diagram is shown in Fig, 1.

The "main" class (the class containing the method main) is the class Parser.
This class has only two methods: getString and main. The method
get3tring takes the string input from the keyboard. The method main
controls the processing of the string, returned as the result from the method
getString.
The class 1ist represents generic single connected list. All operations with
this list are executed over objects of the class type ListElem. To operate
with objects of some other class, it is only necessary to inherit the class 1ist
by the other class. The class 1ist has the following methods:
¢ inserting the clement at the head of the list (addFirst);
¢ inserting the element at the tail of the list (addLast);
e inserting the element at the specified position of the list
(insertAt);
s accessing and extracting the first element of the list (getFirst);
e accessing and extracting the last element of the list (getLast);
e accessing the first element of the list (peekFirst);
e accessing the last element of the list (peekLast);
e accessing and extracting the element at the specified position of the
list (getElemAtPos);
e accessing the element at the specified position of the list
(elemAtPos);,

Desing and implementation of... 15

e returning the current element of the list (the element last accessed
but not extracted) (getCurr);

e returning the next element of the list (the element immediately
following the current element) (getNext); ‘

Ap
i 1
StringListElem F‘D} ListElem CExecutiontr ‘L —
1 1
i R - o |
1 1 7 (1
- - :
ListOutOfBounds i

S S

17
r“"“"}t ClientServer j‘
' i L N I P S
x | o _ B 7
8t —— ErrorList i
! 1 1 r —
A L e ||
rser I |
—— T |
CExprTreeElem D CBinTreeElem :
- ;
1 1
<
1

CFieldsChecker

! i

o 1 e S— ;
- —— I

‘ ‘ i

N - /|\1 L——T“J

Figure 1. The class diagram of the query language for retrival bibliographic
database

s concatenation of the list at the end of the current list (concat);

e positioning the current element at the desired position in the list
(seek); :

e getting the empty status of the list (1 sEmpty);

16 LFisl at al.

e emptying the list (emptylt).

The class ListOutOfBoundsException is the class whose objects are
generated when the exception occurs by inserting the elements at the illegal
position of the list (object from class 1ist).

The class Cstack inherits the class 1ist. This class has the methods for
inserting an element in the stack (the element is always inserted at the top of the
stack) and removing elements from the stack (the element is always removed
from the top of the stack).

The class ListElem represents the element of the list defined by class 1ist.
To construct the list of the elements of any other class type it is only necessary
to inherit the class ListElem by these other classes. According to this
specification, the class StringListElem inherits the class ListElem.
The class StringListElem, in addition to the fields contained in the class
ListElem contains the field of type String which represents the useful
contents of this class type objects. The list whose elements are of class type
StringListElemis actually the list of strings.

The class RangeString for some string checks if the string matches
particular format representing input range format. This class is used by
commands of type selestc, since this type of query does not always return
the identifications of all hit documents.

The class CFieldsChecker is the class dealing with the prefix names. This
class has the following methods:

e the constructor reads information about prefix index type (i.e.,
which of them (prefixes) has basic or additional, or both index type)
from the specified file. Then, these prefixes are stored in the
internal data structures of the class to be available for the
subsequent work;

o the method checking for the particular index if its prefix type is the
basic one (1sBase);

o the method checking for the particular index if its prefix type is the
additional one (isAdditiocnal);

o the method returning the name of the next prefix with the basic type
index (getBase);

Desing and implementation of... 17

e the method returning the name of the next prefix with the additional
type index (getAdditional);

The class ErrorList is the class which records the errors occurred during the
execution of the program. The input data format errors are stored in this class.
This class writes all error messages into a specified file and records if the error
occurred.

The class ParsableString is the class used for parsing the strings
containing tokens separated by specified delimiters and in which the tokens
appear in the sequence created following defined rules. This class supports
splitting the string into tokens only if the delimiters separating the tokens are
given. When calling the constructor of the class ParsableString the
object from the class ErrorList must be assigned to each object from the
class ParsableString; the object from the class ErrorList will be used
by the object from the class ParsableString to store the errors in the input
data detected during parsing phase.

The class ExpresionList is derived from the class 1ist which means that
this class represents the list, in this particular case the list of elements of type
StringListElem. This class has the method toPostfix which creates the
list containing the expressions represented by reverse Polish notation (RPN
expression) from the list containing the same expressions represented by infix
Polish notation (IPN expression). All operations are performed with respect to
predefined operators that are used in the expressions. The constructor of this
class also requests the assigned object from the class ErrorList because of
reporting the errors detected during expression translation.

The class CBinTreeElem represents the element of the binary tree. To create
the binary tree of arbitrary elements it is necessary to define the class inheriting
the class CBinTreeElem and then use this class as the element of the binary
tree. According to this possibility the class CExprTreeElem mheriting the
class CBinTreeElem represents the element of the particular tree which will
be used in the program.

The class CExprTree represents the binary tree which is needed to solve this
particular problem. The object from the class ErrorList representing the list
recording the error messages is assigned to the class CExprTree in the
constructor.

18 LFi3l at al.

The class Cexecutioner is the class executing the query generated by the
tree. This class establishes the network connection with the server, sends the
query requests to the server and returns the results.

The class ServerSettings accepts the parameters for the server connection
setup. This class has the methods that return the server name and the number of
the port assigned to the socket open to the server.

The class ClientServer is used to send the query request to the server and
receive the results from the server. The method connect of this class opens
the connection with the server. The method reset resets the connection with
the server, while the method close permanently disconnects the server. The
methods PlainMessage, SQLMessage, justSend and
nativeMessage are used for sending different types of messages to the
server. If the retrieval result returned by the server is more than one line length,
then the results are. accepted wusing the methods getRow,
buffrizeRowInd and bufferizeNextRow. The method getHits
returns the number of hits, i.e., the number of documents satisfying the query.
The method analyseResponse analyzes the responses obtained from the
- server and updates the internal structures of this class.

4. The Implementation

The implementation is carried out using the programming language Java and in
full conformance with the given specification. The inheritance from the UML is
implemented by standard inheritance mechanism of the Java programming
language. The only additional concept of the UML used in this implementation
is the navigation. This concept is implemented in the application in two
different ways. The first one is that the navigating object has the navigated
object as one of its attributes. The second way is that the navigated object is
treated as the argument of the function call of the navigating object.

The implementation of the UML inheritance concept in Java language in this
application is illustrated by the classes 1ist and ExpresionList (the class
ExpresionList inherits the class 1ist). The navigation is illustrated by
the usage of the class ErrorList, which is the parameter of (almost) all
constructors of other classes. It is necessary to note here that the class
ParsableString is realized by using the class belonging to one of the
standard packages of the Java programming language, the class
StringTokenizer.

Desing and implementation of... ' 19

5. Conclusion

The client side application for bibliographic data retrieval is developed along
with the server application. The server application is implemented using Oracle
DBMS and its ConText Option.

The client application is developed using the programming language Java. This
language is the new one, but still very widely used, particularly on the Internet.
The ability of the Web browser to interpret Java scripts and execute Java
programs (applets) makes the final goal of this application to be available in the
form of the applet. This form of application provides one the possibility to
access and retrieve the library database residing anywhere on the Internet.

References

[1] Lazarevié, Branislav (Editor). Forming and Retrieval of the Databases in
the System of Scientific and Technological Information of Republic of
Serbia, Minstry for Science and Technology of Republic of Serbia,
Belgrade, 1996. (in Serbian)

[2] Java Language Speciﬁcation, Sunm Microsystems Computer Corporation,
USA, 1996.

[3] Milosavljevic, Branko. Implementation of the Text Server for Indexing and
- Retrieval of Bibliographic Data in Oracle Environment, B.Sc., Faculty of
Engineering, Novi Sad, 1997. (in Serbian)

[4] Fisl, Igor. Design and Implementation of the Client Application for
Retrieval of Bibliographic Data in Java Environment, B.Sc., Faculty of
Engineering, Novi Sad, 1997. (in Serbian)

[5] Trickovi¢, Ivana. Application of the Petri Nets to Specification of the
Dynamics of Information Systems, M.Sc. thesis, Faculty of Science, Novi
Sad, 1997. (in Serbian) ‘

[6] UML Notation Guide, version 1.0, RATIONAL SOFTWARE Corporation,
Santa Clara, CA, http://www.rational.com

