ON THE EXISTENCE OF A MAXIMAL ELEMENT OF MULTIVALUED MAPPINGS IN *H*- SPACES

Olga Hadžić

Institute of Mathematics, Faculty of Science, University of Novi Sad Trg Dositeja Obradovića 4, 21000 Novi Sad, Yugoslavia

Abstract

A result on the existence of a maximal element of multivalued mappings in H-spaces is proved.

AMS Mathematics Subject Classification (1991): 47H10 Key words and phrases: maximal element, multivalued mappings, Hspace

1. Introduction

In the last twenty years a lot of have been published on about the existence of a maximal element of multivalued mappings. This problem belongs to mathematical economy, more precisely to exchange economy [10]. An exchange economy is a model of a very simple type of agents, consumers and economy without production. Each consumer owns resources of various commodities, which may be exchanged with other consumers.

In the exchange economy **preferences** of consumers are an essential part. Let E be the **commodity space** and H the set of consumers. Each consumer $h \in H$ has a **consumption set** $X^h \subset E$ from which he has to obtain a commodity bundle. Each consumer $h \in H$ has **preferences** amongst the commodity bundles in X^h , and these are expressed by a correspondence

 $P^h: X^h \to \mathcal{P}(X^h)$. The set $P^h(x)$ contains all commodity bundles that h strictly prefers to $x \in X^h$. Hence

$$y \in P^h(x)$$

means that the consumer h considers the bundle y to be **better** than the bundle x. In the literature on preferences a number of assumptions on P^h are introduced. One of the most important assumptions is the **irreflexivity**:

$$(\forall x \in X^h) (x \notin P^h(x)),$$

which is a very natural assumption. Namely, P^h is **irreflexive** if x is not better than X. In the language of the fixed point theory, the property of the irreflexivity of P^h means that P^h has no fixed point.

Given an irreflexive preference $P^h: X^h \to \mathcal{P}(X^h)$ and a set $B \subset X^h$, we call $x \in B$ a maximal element of B with respect to P^h if and only if

$$(\forall y \in B) (y \notin P^h(x)).$$

Hence, x is a maximal element of B with respect to P^h if and only if B does not contain an element better than x. Obviously, x is a maximal element of B with respect to P^h if and only if

$$P^h(x) \cap B = \emptyset.$$

A well known result on the existence of a maximal element of a correspondence follows from the Browder fixed point theorem proved in [3].

Theorem A. Let K be a nonempty, compact and convex subset of a Hausdorff topological vector space $E, T : K \to \mathcal{P}(E)$ and the following conditions be satisfied:

- i) For each $x \in K$, T(x) is a nonempty convex subset of K.
- ii) For each $x \in K$, $T^{-1}(x) = \{y; y \in K, x \in Ty\}$ is open in K.

Then there exists a point $x_0 \in K$ such that $x_0 \in Tx_0$.

From Theorem A the following theorem can be easily proved.

Theorem A'. Let K be a nonempty, compact and convex subset of a Hausdorff topological vector space E, $T: K \to \mathcal{P}(E)$ an irreflexive correspondence and let the following conditions be satisfied:

(a) For each $x \in K$, T(x) is a convex subset of K.

(b) For each $x \in K$, $T^{-1}(x)$ is open in K.

Then there exists $x_0 \in K$ such that $Tx_0 = \emptyset$.

Proof. If we suppose that $Tx \neq \emptyset$, for every $x \in K$, from Theorem A it follows that for some $\bar{x} \in K$, $\bar{x} \in T\bar{x}$. This contradicts to the assumption that T is irreflexive. Hence

$$\{x; x \in K, Tx = \emptyset\} \neq \emptyset.$$

In this paper the condition that T(x) is a H-convex subset of K, for each $x \in K$, is replaced by the weaker condition that $\bigcap_{u \in U} Tu$ is H-convex, for every open set $U \subset K$ [1] and E will be an H-space (E, Γ) [2].

Example. [1] For every $x \in (0,1)$ let

$$Ax = [0,1] \cup (\mathbf{Q} \cap [x,1]), Bx = [0,x] \cup ((\mathbf{R} \setminus \mathbf{Q}) \cap [x,1]),$$

where **Q** is the set of all rational numbers. Let $T:[0,1] \to 2^{[0,1]}$ be defined as follows:

$$T(x) = \begin{cases} Ax, & \text{if } x \in (0,1) \cap \mathbf{Q} \\ Bx, & \text{if } x \in (0,1) \cap (\mathbf{R} \setminus \mathbf{Q}), \end{cases}$$
$$T(0) = \mathbf{Q} \cap (0,1), \ T(1) = [0,1].$$

Then $\bigcap_{x \in U} Tx$ is convex for any open set $U \subset [0,1]$.

Let $\mathcal{F}(D)$ be the family of finite subsets of D. An H-space [2] is a triple $(X,D;\Gamma)$ where X is a topological space, D a nonempty subset of X and $\Gamma=\{\Gamma_A\}_{A\in\mathcal{F}(D)}$ a family of contractible subset of X so that $\Gamma_A\subset\Gamma_B$ whenever $A\subset B$ $(A,B\in\mathcal{F}(D))$. If X=D we shall denote $(X,X;\Gamma)$ by (X,Γ) . Any convex space X is an H-space (X,Γ) by putting for $A\subset\mathcal{F}(X),\Gamma_A=coA$, where coA is the convex hull of A and every n- simplex Δ_n is an H-space $(\Delta_n,D;\Gamma)$, where D is the set of vertices and $\Gamma_A=coA$ for $A\in\mathcal{F}(D)$. Let $(X,D;\Gamma)$ be an H-space and C a nonempty subset of X. If for each $A\in\mathcal{F}(D)$ such that $A\subset C$ we have that $\Gamma_A\subset C$ then C is an H-convex set.

2. Existence of a maximal element

Let $N \in \mathbb{N}$, $\langle N \rangle$ be the set of all nonempty subsets of $\{0, 1, 2, ..., N\}$, $\Delta_N = co\{e_0, e_1, ..., e_N\}$ be the standard simplex of dimension N, where $\{e_0, e_1, ..., e_N\}$

is the canonical basis of \mathbf{R}^{N+1} and for $J \in \langle N \rangle$ let $\Delta_J = co\{e_j; j \in J\}$.

In [4], the following Lemma is proved.

Lemma. Let X be a topological space and $F : \langle N \rangle \to X$. Suppose that for each $J \in \langle N \rangle$, F(J) is a nonempty, contractible subset of X and that

$$(\forall J, J' \in \langle N \rangle)(J \subseteq J' \Rightarrow F(J) \subseteq F(J')).$$

Then, there exists a continuous function $g:\Delta_N\to X$ such that

$$g(\Delta_J) \subseteq F(J)$$
, for all $J \in \langle N \rangle$.

This Lemma will be used in the proof of the next Theorem.

Theorem. Let (E,Γ) be an H-space, K a compact and H-convex subset of E and $S,T:K\to \mathcal{P}(K)$ such that the following conditions are satisfied:

- 1) T is irreflexive.
- 2) For every open subset $U \subset K$, $\bigcap_{u \in U} Tu$ is an H-convex set.
- 3) $Sx \subseteq Tx$, for every $x \in K$.
- 4) $S^{-1}(x)$ is open, for every $x \in K$.

Then there exists at least one maximal element of S.

Proof. Suppose that $Sx \neq \emptyset$, for every $x \in K$. Then from 3) it follows that $Tx \neq \emptyset$, for every $x \in K$. We shall prove that in this case there exists $x_0 \in K$ such that $x_0 \in Tx_0$, which contradicts to the assumption that T is irreflexive. Since $S^{-1}(x)$ is open for every $x \in K$, the family $\{S^{-1}(x)\}_{x \in K}$ is an open covering of K. From the compactness of K it follows that there exists $\{x_0, x_1, x_2, ..., x_n\} \subseteq K$ such that

$$K = \bigcup_{i=0}^n S^{-1}(x_i).$$

Let $h_0, h_1, h_2, ..., h_n : K \to [0, 1]$ be continuous mappings such that $\sum_{i=0}^n h_i(x) = 1$, for every $x \in K$ and for every $i \in \{0, 1, 2, ..., n\}$

(2)
$$h_i(x) \neq 0 \iff x \in S^{-1}(x_i).$$

For every $x \in K$, $I(x) \subseteq \{0, 1, 2, ..., n\}$ is defined in the following way:

$$i \in I(x) \iff h_i(x) \neq \emptyset.$$

Hence

$$i \in I(x) \iff x \in S^{-1}(x_i).$$

For every $I \subseteq \{0, 1, 2, ..., n\}$ let

$$F(I) = \bigcap_{i \in I} S^{-1}(x_i).$$

We shall prove that $x \in F(I(x))$ for every $x \in K$ which implies that

(3)
$$\bigcap_{u \in F(I(x))} Tu \subseteq T(x), \text{ for every } x \in K.$$

Since $x \in S^{-1}(x_i)$, for every $i \in I(x)$, it follows that

$$x \in \bigcap_{i \in I(x)} S^{-1}(x_i) = F(I(x)).$$

We shall prove that for every $x \in K$ and $i \in I(x)$

$$(4) x_i \in \bigcap_{u \in F(I(x))} Tu.$$

Relation (4) follows from

(5)
$$x_i \in \bigcap_{u \in F(I(x))} Su$$
, for every $i \in I(x)$.

Indeed, if $u \in F(I(x))$ then $u \in S^{-1}(x_i)$, for every $i \in I(x)$, i.e. $x_i \in Su$, for every $i \in I(x)$. Hence, (5) holds and condition (3) implies (4). Since $\bigcap_{u \in F(I(x))} Tu$ is H-convex (4) implies that

(6)
$$\Gamma_{co\{x_i;i\in I(x)\}}\subseteq\bigcap_{u\in F(I(x))}Tu\subseteq T(x).$$

Let

$$G(I) = \Gamma_{co\{x_i; i \in I\}}, I \subseteq \{0, 1, 2, ..., n\}.$$

We can apply Horvath's result on the existence of a continuous mapping $g: co\{e_0, e_1, e_2, ..., e_n\} \to E$ (since G(I) is contractible) such that

(7)
$$g(\Delta(I)) \subseteq G(I)$$
, for every $I \subset \{0, 1, 2, ..., n\}$.

Here

$$\Delta(I) = co\{e_{i_1}, e_{i_2}, ..., e_{i_k}\},\$$

and

$$I = \{i_1, i_2, ..., i_k\} \subset \{0, 1, 2, ..., n\}.$$

Relations (6) and (7) imply that

(8)
$$g(\Delta(I(x))) \subseteq G(I(x)) \subseteq T(x), x \in K.$$

Since $h \circ g : \Delta_n \to \Delta_n$, where

$$h(x) = (h_0(x), h_1(x), h_2(x), ..., h_n(x)), \text{ for every } x \in K$$

there exists $x_0 \in \Delta_n$ such that

$$(h \circ g)(x_0) = x_0.$$

Then

$$(g \circ h)(g(x_0)) = g(x_0).$$

On the other hand

$$(h \circ g)(x) \subseteq \Delta(I(g(x)))$$
 since $h(x) \in \Delta(I(x))$, for every $x \in K$.

Hence (8) implies that $g(x_0) \in T(g(x_0))$, which contradicts to the irreflexivity of T.

References

- Sadiq Basha, S., Vetrivel, V., Common fixed point theorems, Acta Sci. Math. (Szeged), 62 (1996), 279-288.
- [2] Bardaro, C., Ceppitelli, R., Some further generalizations of Knaster-Kuratowski-Mazurkiewicz theorem and minimax inequalities, J. Math. Anal. Appl. 132 (1988), 484-490.

- [3] Browder, F., The fixed point theory of multivalued mappings in topological vector spaces, Math. Ann. (1968), 282-301.
- [4] Hadžić, O., Fixed point theory in topological vector spaces, University of Novi Sad, Institute of Mathematics, 1984, 337 pp.
- [5] Hadžić, O., Some fixed point and coincidence point theorems for multivalued mappings in topological vector spaces, Demonstratio Mathematica, Vol. XX, No 3-4 (1987), 367-376.
- [6] Horvath, C., Convexité généralisée et applications, Sém. Math. Supér., 110, Press Univ. Montréal, Montréal, 1990, 79-99.
- [7] Horvath, C., Contractibility and generalized convexity, J. Math. Anal. Appl. 156 (1991), 341-357.
- [8] Mehta, G., Tan, K.K., Yuan, X.Z., Fixed points, maximal elements and equilibria of generalized games, Nonlinear Anal. Vol. 28, No. 4, (1996), 689-699.
- [9] Mehta, G., Duality in fixed point theory of multivalued mappings, Economic Letters, 16 (1984), 93-97.
- [10] Frederick van der Ploeg (editor): Mathematical Methods in Economocs, John Wiley & Sons, 1986.
- [11] Tarafdar, E., A fixed point theorem and equilibrium point of an abstract economy, Journal of Mathematical Economics 20 (1991), 211-218.
- [12] Vetrivel, V., Existence of Ky Fan's best approximant for set-valued maps, Indian J. Pure Appl. Math., 27(2) (1996), 173-175.
- [13] Yannelis, N., Prabhakar, N., Existence of maximal elements and equilibria in linear topological spaces, J. Math. Econ. 12 (1983), 233-245.