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Abstract

A result on the existence of a maximal element of multivalued map-
pings in H-spaces is proved.
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1. Introduction

In the last twenty years a lot of have been published on about the existence
of a maximal element of multivalued mappings. This problem belongs to
mathematical economy, more precisely to exchange economy [10]. An ex-
change economy is a model of a very simple type of agents, consumers
and economy without production. Each consumer owns resources of
various commodities, which may be exchanged with other consumers.

In the exchange economy preferences of consumers are an essential
part. Let E be the commodity space and H the set of consumers. Each
consumer k2 € H has a consumption set X* C E from which he has to ob-
tain a commodity bundle. Each consumer » € H has preferences amongst
the commodity bundles in X", and these are expressed by a correspondence
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Ph . X*h — P(X"). The set P"(z) contains all commodity bundles that h
strictly prefers to z € X". Hence
y € P'(z)

means that the consumer A considers the bundle y to be better than the
bundle z. In the literature on preferences a number of assumptions on P* are
introduced. One of the most important assumptions is the irreflexivity:

(Ve € X*) (2 ¢ PM(2)),

which is a very natural assumption. Namely, P" is irreflexive if z is not
better than X. In the language of the fixed point theory, the property of the
irreflexivity of P* means that P* has no fixed point.

Given an irreflexive preference P* : X* — P(X") and a set B C X", we
call z € B a maximal element of B with respect to P? if and only if

(Vy € B) (y & P'(2)).

Hence, z is a maximal element of B with respect to Ph if and onl); if B does
not contain an element better than . Obviously, z is a maximal element of
B with respect to P? if and only if :

PMz)n B =0.
A well known result on the existence of a maximal element of a correspon-
~dence follows from the Browder fixed point theorem proved in [3].

Theorem A. Let K be a nonempty, compact and convex subset of a Haus-
dorff topological vector space E, T : K — P(E) and the following conditions
be satisfied:

i) For each z € K, T(xz) is a nonempty convex subset of K.

i) For each z € K, T~Y(z) = {y; y € K, = € Ty} is open in K.
Then there ezists a point zo € K such that zo € Txo.

From Theorem A the following theorem can be easily proved.

Theorem A’. Let K be a nonempty, compact and convez subset of a Haus-
dorff topological vector space E, T : K — P(E) an irreflezive correspon-
dence and let the following conditions be satisfied:

(a) For each z € K, T(z) is a convez subset of K.
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(b) For each z € K, T~'(z) is open in K.
Then there exists zg € K such that Tzg = 0.

Proof. If we suppose that Tz # @, for every z € K, from Theorem A it
follows that for some # € K, # € TZ. This contradicts to the assumption
that T is irreflexive. Hence

{z; 2 € K, Tz =0} #0.

In this paper the condition that T'(z) is a H-convex subset of K, for
each z € K, is replaced by the weaker condition that (| Tu is H-convex,

for every open set U C K [1] and E will be an H-spacge(llj'?,I‘) [2].
Example. [1] For every z € (0,1) let
Az =[0,1U(Q0N [z, 1]), Bz = [0,2] U (R\ @) 1 [z, 1]),
where Q is the set of all rational numbers. Let T : [0,1] — 2(%! be defined
as follows:
Bz, ifze(0,1)n(R\Q),
T(0)=Qn(0,1), (1) = [0,1].

T(m):{ Az, ifze€(0,1)NQ

Then () Tz is convex for any open set U C [0, 1].
zelU

Let (D) be the family of finite subsets of D. An H-space [2] is a triple
(X, D;T') where X is a topological space, D a nonempty subset of X and I' =
{Ta}ac F(D) @ family of contractible subset of X so that 'y C I'p whenever
AC B (A,B€ F(D)).If X =D we shall denote (X, X;T') by (X,T). Any
convex space X is an H-space (X,I') by putting for A C F(X),T'4 = coA,
where coA is the convex hull of A and every n— simplex A, is an H-space
(An, D;T'), where D is the set of vertices and I'y = coA for A € F(D).
Let (X,D;T) be an H-space and C a nonempty subset of X. If for each
A € F(D) such that A C C we have that I'y C C then C is an H —convex
set.

2. Existence of a maximal element

Let N € N, (N) be the set of all nonempty subsets of {0,1,2,..., N}, Ay =
co{eg, €1, ...,en} be the standard simplex of dimension N, where {eq, €1, ..., en}
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is the canonical basis of RV+! and for J € (N) let Ay = co{e;; j € J}. |
In [4], the following Lemma is proved.
Lemma. Let X be a topological space and F : (N) — X. Suppose that for
each J € (N), F(J) is a nonempty, contractible subset of X and that
(VL J e (N))J CJ = F(J) C F(J)).

Then, there exists a continuous function g : Ay — X such that |

g(Ay) C F(J), forall J € (N).

This Lemma will be used in the proof of the next Theorem.

Theorem. Let (E,T') be an H-space, K a compact and H -convez subset of
E and S,T : K — P(K) such that the following conditions are satisfied:

1) T is irreflezive.

2) For every open subset U C K, (),cy T'u is an H-convez set.
3) Sz C Tz, for every z € K.

4) S~Y(z) is open, for every z € K.

Then there exists at least one mazimal element of S.

- Proof. Suppose that Sz # @, for every £ € K. Then from 3) it follows
that Tz # @, for every z € K. We shall prove that in this case there exists
zo € K such that o € Tz, which contradicts to the assumption that T is
irreflexive. Since S~!(z) is open for every z € K, the family {S~1(z)}zek
is an open covering of K. From the compactness of K it follows that there
exists {zo, 21, Z2,...,2n} C K such that

K = O §1(;).

=0

Let hg, hy, h2, ..., hn : K — [0, 1] be continuous mappings such that E hi(z) =
=0
1, for every z € K and for every i € {0,1,2,...,n}

(2) hi(z) # 0 <= z € §~Y(z2).
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For every z € K, I(z) C {0,1,2,...,n} is defined in the following way:
i€ I(z) <= hi(z) # 0.

Hence
i€ I(z) <> z € S ().

For every I C {0,1,2,...,n} let

P(I) = ) $7 ().

i€l
We shall prove that z € F(I (:c)) for every z € K which implies that

(3) ﬂ Tu C T(z), for every z € K.
ueF(I(z))

Since z € §~1(g;), for every i € I(z), it follows that

z € ﬂ §7Yz;) = F(I(x)).

iel(z)

We shall prove that for every z € K and i € I(z)

(4) z; € ﬂ Tu.

u€F(I(=))
Relation (4) follows from

(5) . z; € ﬂ Su, for every i € I(z).
u€F(I(z))

Indeed, if w € F(I(z)) then u € S~1(x;), for every ¢ € I(z),ie. z; € Su,
for every ¢ € I(z). Hence, (5) holds and condition (3) implies (4). Since
Tu is H-convex (4) implies that

u€F(I(z))

(6) I‘co{:z:.';iel(a:)} (_-—: ﬂ Tu g T(x)
ueF(I(x))

Let

G(I) = I‘co{zg;iEI}, Ic {0) 172)"'7”}-
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We can apply Horvath’s result on the existence of a continuous mapping
g : co{eg, €1, €9, ...,en,} — E (since G(I) is contractible) such that

(7) | g(A(I)) C G(I), forevery IC{0,1,2,..,n}.

Here
A(I) = co{ei;, €iyy s }

and
I= {il,iz, ...,ik} C {0, 1,2,...,n}.

Relations (6) and (7) imply that
(5) 9(A(I(2)) € GUI(2) € T(2), 2 € K.
Since hog: A, — A,, where
h(z) = (ho(z), ha1(z), ho(z), ...,hn(:;:)), for every z € K
there exists zg € A, such that
(h o g)(z0) = zo.

Then
(90 h)(9(20)) = g(zo)-
. On the other hand
(hog)(z) C A(I(g(z))) since h(z) € A(I(z)), for every z € K.

Hence (8) implies that g(zo) € T(g(zg)), which contradicts to the irreflex-
ivity of 7.
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