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Abstract

The notion of the 2-Menger space is a probabilistic generalization
of the 2-metric space introduced by Gahler [1] in 1964.

A coincidence point theorem is proved in such kind of spaces using
a generalization of Hicks’ probabilistic contraction.
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1. Introduction

The theory of probabilistic metric spaces is an important part of Stochastic
Analysis, and so it is of interest to develop the fixed point theory in such
spaces. There are many results in fixed point theory in probabilistic metric
spaces ([10], [11]).

2-metric spaces were introduced by Géahler [1] in 1964, and since then
there have been many fixed point theorems proved in 2-metric spaces, [8].
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Since the introduction of 2-Menger spaces, as a generalization of 2-metric
spaces [12], there have been only a few results in fixed point theory (see [12],

[13], [14)).

In this paper we shall prove a coincidence point theorem for multivalued
mappings satisfying generalized Hicks’ contraction principle in 2-Menger
spaces.

2. Preliminaries

Let X be a nonempty set, and let the mapping d: X x X x X — [0,+00)
satisfy the following conditions:

1. For each pair of points (z,y) € X x X with z # y there is z € X such
that d(z,y,2) # 0.

2. d(z,y,z) = 0 when at least two of three points are equal.
3. For all z,y,z€ X:
d(z,y,2) = d(z, z,y) = d(y, 2, ) .
4. For all z,y,z,u € X:
dz,y,z) < d(z,y,u)+ d(z,u,z)+ d(u,y,2) .
Then (X,d) is said to be a 2-metric space. It is easy to see that d is a

non-negative functional.

The convergence in a 2-metric space is introduced in the following way.
Let {z,}nen be a sequence of X and # € X. We say that the sequence
{zn}neN converges to z if for every a € X, limy, . d(%r,z,a) = 0. The se-
quence {Z, }nen is a Cauchy sequenceif for every a € X, limp, n—oo A(Zm, Zn,
a) = 0. If every Cauchy sequence in X is convergent to a point in X we say
that (X,d) is a complete 2-metric space.

Two argument function ¢t : {0,1] x [0,1] — [0,1] is called t-norm if
it is symmetric, non-decreasing in both arguments, associative and Va €.
[0,1], t(a,1)=t(1,a) = a.

We denote by A the set of distribution functions F : R — [0, 1] (F is non-
decreasing, lower semicontinuous, infs,er F(8) = 0 and sup,cg F(s) = 1).
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We denote by A* the set of distribution functions which satisfy the condition
F(0)=0.

0, s<0

We shall use function H(s) := { L 530

The triple (X, F,t) is a 2-Menger space if X is a non-empty set, for all
z,y,2 € X, F:(z,y,2) — {Fpy.(8)} € AT, t a t-norm and the following
conditions are satisfied:

1. for each pair of points (z,y) € X x X with z # y there is z € X such
that Fr . # H,

2. F;,, = H when at least two of three points are equal.

3. for all z,y,2 € X:
FI’yY’z = Fz’z,y = Fylzlz I

4. for all z,y, 2,4 € X and for all ¢;,%3,13 > 0

Fr,y.Z(tl +12+ t3) 2 Tz(Fz,y,u(tl)v Fm.u’Z(tZ’)’ Fu,y,Z(tS)) .

Remark 1. In this paper we shall use the following notation:
T\(z,9) = T(2,3) , T2(2,3,7) = T(x,T(y, 7)) and for every n > 3

Tn(.’El, Ty . ‘7$71+1) = T(.’E],Tn_l(il:g, T390, .’En+1)) .

A sequence {z,}ren of X converges to z € X if for every a € X, every
€ > 0 and every A € (0,1) there exists n(e¢, A,a) € N such that

Frzn0(€)>1—Aforalln > n(e, A a).

A sequence {zn}neN from X is a Cauchy sequence if for everya € X, € > 0
and A € (0,1) there exists n(¢, A,a) € N such that

Frponipa(€) > 1= Aforalln > n(e,A,a), and allp e N.

A 2-Menger space is complete if every Cauchy sequence {2, }.en of elements
of X converges to an element of X.

Example 1. Let (M, d) be a separable 2-metric space with the area function
d continuous in all variables such that there exists a continuous function
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z: MxM\Apm — M,sothat forall (z,y) € M xM\Ap,d(z,y,2(z,y)) # 0.
Let (2,4, P) be a probability measure space. We shall denote by S the set
of all the equivalence classes of measurable mappings X : @ — M. If
X,Y,Z € S and s € R then Fxy,z(s) is defined in the following way:

Fyyz(s) = P({w:w € ,d(X(w),Y(w), Z(w)) < s}) .
Knowing that d is continuous we know that Fix y z(s) is a probability dis-
tribution function.

Let us prove that (5, F,T) is a 2-Menger space, where

T(a,b) = tm(a,b) := max(a +b—1,0).

L.LEX, Y€ Sand X #Y,let A:= {w: X(w) # Y(w)}. Obviously,
there exists A’ C A such that P(A’) > 0 and A’ € A. Let us define a
mapping Z : & — M in the following way:

) 2(w), we A
aw) "{ X(w), w4,

where 2(w) := 2(X(w),Y(w)). X and Y are measurable mappings
and z is a continuous mapping so 2(w) is a measurable mapping. By
definition d(X(w),Y(w), 2(X(w),Y(w))) # 0. We have only to prove
that Z is a measurable mapping since

P{w:d(X(w),Y(w), Z(w)) #0}) = P(4") > 0.
Take an arbitrary Borel set B. Then
Z7YB)=(X"YB)nAHU(z"Y(B)nA')e A.

2. <« At least two of X, Y and Z are equal = (for example X =
Y, the same applies for other combinations) P({w : X(w) =
Y(w)}) =1 < P({w: d(X(v),Y(w), Z(w)) = 0}) since X(w) =
Y (w) implies d(X (w),Y(w), Z(w)) = 0. It follows that Fxyz =
.

3. Follows immediately from the definition of 2-metric space (3.).

4. Suppose z,y,z from X and t,1;,13 are given. Let us denote by
D= {w : d(X(w),Y(w), Z(w)) <t +12+ t3},
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= {w : d(X(w),Y(w),U(w)) < t1},
B :={w:dX(w),U(w), Z(w)) < t} and
C:=A{w: d(U(w),Y(w), Z(w)) < 13}

Since for all z,vy, z, v from M
Cd(z,y,2) < d(z,y,u) + d(z,u,2) + d(u,y, 2),
it follows that AN BN C C D. Using
P(ANBNC)=P(ANB)+ P(C)—P((ANB)UC) =
= P(A)+ P(B) - P(AUB) + P(C) - P((ANnB)u ()
there follows
Fxyz(ti+t,+t3)=P(D)>P(ANBNC) >
> P(A) + P(B) + P(C) - 2> P(A) + tn(P(B), P(C)) -1 >
2 tm(P(A), tm(P(B), P(C))) = T*(Foyu(t1), Frua(ta)s Fuy,a(ta))
provided that P(B)+P(C)—1 > 0 and P(A)+(P(B)+P(C)-1)-1>
0. If that is not the case, then

Tz(Fz,y'u(tl )» Fz.u,Z(tZ)» Fu,y,z(tS)) =0,

and the proof follows immediately. a

We shall denote by M the set of all functions % : [0, +00) — [0, +00)
which are nondecreasing and such that for every s > 0 series 3.7 ; ¥™(s)
converges. By 2M we shall denote the family of all nonempty subsets of
M C § and by 2¥ the family of all nonempty closed subsets of M C X.

A t-norm T is of the h-type if the family of functions {Tn(z)}nen is
equicontinuous at the point z = 1, where T}(z) = T(z,z) and T,(z) =
T(z,Th-1(z)), for every n > 2.

A mapping A : M — 2M is weakly commuting with f : M — M if for
every z € M, f(Az) C A(fz).

Let (X,F,T) be a 2-Menger space, ) Z M C S, f : M — M and A :
M — 2M_ The mapping A is f-strongly demicompact if for every sequence
{Zn}nen from M, such that for all @ € X, lim,_, 400 Ffzp, yn,a(€) = 1, for
some sequence {¥Yn}neN, Yn € Az,, n € N and every ¢ > 0, there exists a
convergent subsequence {fz,, }xeN of the sequence {fz,}nenN-
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3. A fixed point theorem

Theorem 1. Let (X,F,T) be a complete 2-Menger space, sup, ., T(z,z) =
1, M a nonempty and closed subset of X, f : M — M a continuous mapping,
A B: M — 2(’;(M), and ¥ € M, so that the following implication holds for

every u,v € M and every ¢ > 0

Va € X, Fty fual€) >1—€=> for every p € Au there ezists ¢ € Bv
such that Ya € X, Fpq.(¥(3)) >
1 — 9(¢) and for every p' € Buv
(*) there erists ¢ € Au such that Va €
X, Fp’,q',a("p(s)) >1- ’(ﬁ(G)

If A and B are weakly commuting with f and a) or b) are satisfied, then
there exists € M such that fr € Az N Bz, where

a) A or B are f-strongly demicompact,

b) t-norm T is of the h-type.

Proof Like in [9] we shall choose zy and z; from M such that fz, € Azg.
Choose 8 > 1, then Va € X, Fygy 54,,0(8) > 1 — s and using (*) there exists
T3 € M such that Va € X, Fyz, fz,,4(%(s)) > 1 — 4(s) and fzy € Bzy.
Continuing in this way we obtain a sequence {z,}n,en in M such that for
every n € N

1) f$2n+l € A$2n and f$2n+2 c B$2n+1,
ii) Va € Xvafvn,fl‘nﬂ,a("pn(s)) >1- ¢n(s)'
Since limp—4o0 %"(8) = 0, from ii) it is easy to prove that for every

€ > 0 and every A € (0,1) there exists ny(e,A) € N such that for every
n > ny1(€,A),Va € X, Fyp, 52,41,a(€) > 1 — A This means that

(1) V€ > O,V(Z € X’n]:i_{%o Ff$n7f$n+1oa(€) =1.

a) If we suppose that A is f-strongly demicompact, using (1) and fzonq; €
Azy, (n € N), we conclude that there exists a convergent subsequence

{fz2n, }ken of the sequence {fzon}neN-
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b) We shall prove that if T is of the h-type, the sequence {fz,}nen is
convergent. We shall use technique identical to the one used in [10]. Let
€>0,X€(0,1) and s > 0 be given. Y, N %™(8) is convergent so there
exists n'(¢, s) such that 2. Y 9"(s) < €. Then for all n > n'(e, s) and

n>n!(e,s)

forall pe N

n+p
Va € X’ Ff3n+p1f3nya(€') Z Ff3n+p1ffma- (2 : Z ¢m(3)) Z

m=n

2 TZ(Ff-Tn,f-Tn+1yfxn+p(¢n(s))’ fon,f$n+1,a(¢n(s)),

n+p

Ff¢b‘n+1,fxn+p,a(2 : Z P(s8)) =2

m=n+1

Z T2P_3(Ff:z:mf:vn+1.f:cn+p(¢n(3))7 fo",fx"+1,a(¢n(8)),
Ffl‘n+lyf$l7n+2yfzn+}7(¢n+1 (8)), Ff$n+17ffn+2v“(¢n+1(s))’ T

] fon+p—2yfxn+p—1 yan+p(¢n+p—2(s))7 Ff3n+p—2;f5n+p—l ’a(¢n+:v—-2(s)))

Since ¢™(s) — 0 we can take n(s) so that for all n > n(s), ¥"(s) < 1, then
for all n > max(n(s), n'(e,s))

Fton fonppa(€) > T73(1 = 97(s),1 = 9"(s), 1 — ¢"F1(s), 1 - 9"F(s),. ..,
1— p™tP=2(s)1 - ¢”+p"2(s)) .

Since 9 is a nondecreasing function, it follows that for all n > n(s)

(2) Fton,iznpal€) 2 Tap-3(1 - $"(s)) .

Let us assume that ¢™(s) — 0 and that T is of the h-type. From (2) we
conclude that {fz,}nen is a Cauchy sequence.

In both cases there exists

(3) T = klim fzon, .

Now, we shall prove that

(4) Tr = k]g[;o fzgnk_H )
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although the case is less trivial than the one in PM-spaces.

Knowing that sup,, T'(z,z) = 1, for every A € (0,1) we can find §'(})
such that
T%(1-8()),1-80),1-8N)>1-]A.

Let ¢ > 0, A € (0,1) and @ € X be given. Using (3) we can choose
ki (e, A, a) so that

Vk 2 ki(€, 4,0), Fr frny al(5) > 1= 6'(0)
Using (1) we can choose kj(€, A) so that

€
Vk > klz(f’ A)s Fzyf-”"an+lafl'2nk(§) >1- 5/(’\) and

€
VE > ké(f’ /\)’Ffl'?nkvfl'?nk+lpa-(§) >1- 6/(’\) .
Now, for all £ > max(kj(€, A, a), k5(¢€, A)

Fz,fzg,,k“ al€) >

€ € €
2 T2(Fl‘,f$2nk ,a(g)’ Fl‘,fzznk+1,f:vznk (Z);)’ Ff:vznk,f:vznk+1,a(§)) 2
>T%1-6(),1-6(A),1-8A)>1-2,
and the proof follows from the definition of convergence.

Now, we have to show that fz € Az N Bz. Since Az and Bz are closed
it remains to prove that fz € Az n Bz.

From the continuity of f and (1) follows
(3) Ve>0,Ya € X, im Fyppy,  ffosn,41,0(€) = 0.
From the continuity of f, (3) and (4) follows
(6) fo = lm ffron,
(7) fr= nll{%o ffxzn,,+1 .

Suppose € > 0, A € (0,1) and a € X are given. Let us find r(¢, A, a) € Bz
such that

Flor(ena)al€) > 1= 2.
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Since sup, . T(z,z) = 1it is easy to see that there exists 6(A) € (0,1)
such that

T41 — 8(X),1—8(X),1—6(A),1—8(A),1—6(A)>1—-A.

Let #o € [0,+00) be such that ¥(tp) < min(e/5,8(A)). Using (6) we can
choose k1(€, A, a) such that

Vk > ki(e, A, a), Ff:t:,_ff:l:znk,a(t()) >1-1p.
Since fzon,4+1 € AZan,, using (*) there exists 7(¢, A,a) € Bz such that
Vk > k1(€7 ’\70‘)3 Ffl‘gnk+1,T(C,A,G),G(¢(t0)) >1- ¢(t0) >1- 6(’\) .

Since distribution functions are nondecreasing and ¢(%p) < €/5, there follows
that ¢
Vk 2 k1(€, /\, (1), foznk+1’r(€|,\,a)’a(g) >1- 6(/\) .

(5) implies that there exists ka(€, A) such that
VE > ka(e, ’\)7Fffxznk,ffxg,,k.,.l,r(c,/\.a)(g) >1-6(A) and
Vk 2 ka6, X), Fy fomny ffamara(5) > 1= 6(0)
(3) implies that there exists k3(¢, A, a) such that
Vk > ka(e, A, a), fo,ffxznk,r(e,/\,a)(';;) >1-6().
(3) implies that there exists k4(c, A, a) such that
vk > k4(e,,\,a),Ff,__,ff%,a(-;) >1-6().
Now, using 4. from the definition of 2-Menger spaces twice, we have
Fizr(ea)a(€) >
> T*(Fyz, 523, ,a(%); Fz,f23m, e g), F fxznk,r(c,,\,a),a(%f)) >

€ € €
> T4(Ffr,.f-‘82n,‘,a(—)1 Ffz,fzg,. ,r(c,A,a)(—)’ Ffrznk,frznk+1,a(_)7
5 k 5 5
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€ €
Ff;vgnk fZan, 41 ,r(c,/\,a)(g), foznk+1,r(c,/\,a)('5_)) >
> TH1 - 8(A),1—-6(X),1-8(A),1=68(A),1-8(A)>1-2A

In the same manner, using (7) we can show that for all € > 0, A € (0,1) and
a € X we can find g(¢, A, a) € Az such that

Ff‘qu(ca/\yq)ya(e) > 1 - /\

which completes the proof.
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