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Abstract

The cubic spline difference scheme for solving singularly perturbed
boundary value problem is considered. The non-uniform mesh of Bakh-
valov type is used in order to avoid the problem of stability. The second
order of the uniform convergence in respect to perturbation parameter
is obtained. The result is better than the one obtained on Shishkin’s
mesh.
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1.. Introduction

We consider a numerical solution of the singularly perturbed boundary value
problem:

(1) —e%y" +e(z,y) =0, z€[0,1], € €(0,6), g <1,

y(0)=y(1)=0
where ¢ is a small perturbation parameter.
This problem has been treated numerically in many papers.
We consider the problem (1) under the following conditions:

(2) ce C2(I X R)a I= [07 1]:
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(3) 0<v? <ey(z,y), (z,9)elxR,

For small e, the solution of (1) has in general two boundary layers with
O(e) near to z = 0 and =z = 1. That can be seen from the properties of the
exact solution of the problem (1) described in Lemma, which will be given
in another section. ‘

It is known that the standard cubic spline difference scheme on the regular
mesh gives unsatisfactory results for our problem.

In [3] this difference scheme is used on Shihkin’s mesh and the obtained
estimate is ||y ~ uljco < Mn~21n%n.

In this paper we shall use the mesh of Bakhvalov type given in [2] and [8],
and prove that the cubic spline difference scheme applied on such mesh is
the second order accurate in the discrete maximum norm, uniformly in the
perturbation parameter ¢, i. e. the obtained estimate is ||y — u||cc < Mn~2.

2. Discretization mesh and difference scheme

In this section we consider the cubic spline difference scheme defined in [3]
and applied on discretization mesh of Bakhvalov type given in [2].

A special non-equidistant mesh is used in order to obtain more mesh points
in the region of boundary layers.

This fact and the estimates of derivatives of the solution determine the mesh
generating function A(?) in [2], which is given by:

p(t) := aet/(g—-t), if te][0,r]
(4) A1) = p(r)+W(r)(t-1), i te€[r,05]

1-A(1-1), if tel[0.5,1]
where a and ¢ are the constants independent of ¢, such as
(5) g € (0,0.5), aeg <gq.

T is a unique point from (0, q), where

g —(agq(1 - 2¢ + 2ae))/?
B 1+ 2ae '

(6) T

A class of mesh generating function suitable for discretization of our type is
given by:
p(t) = aet/(q - 1).
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Using this function we form the mesh
(7) I ={zi= A(t;),ti=th:i=0,..,n}, neN, h=1/n,

and we also suppose n = 2m, m € N
We form the descrete analogue of the problem (1) using a cubic spline dif-
ference scheme.

Let hy = 2; —2;1,1=1,...,n, ]_l,' = (h; + h,‘+1)/2, t=1,...,n—1. The
difference scheme is defined by:

0= —e2(r] gie1 + iy + 7 yiz1) +
by c(®i-1,¥i-1) + bic(zi, yi) +
(8) btre(zipt,¥ig1), 1= 1,0n—1,
Yo=19yn =0,
where y € R**1,
r. = 3_ 1'?":———3—_—- T = —6
okt higahd T hihigy

Y 2h P 2h; T
Let z := [20,21,...,20) ' € R™1! Let A be a tridiagonal matrix, A €
R Lntl | defined by

-2 0 0
- +

- +
Tn—l Tn—1 Tn—1

0 0 —e*
B is a mapping B : R"*! — R**! given by

0, 1=0
(Bz)i = b7 c(@io1,2i1) + bie(2i, z:) + bf e(@iy1,2i41), i=1,...,n—1
0, ' i=mn

then our scheme is F'u = 0, where

(9) F=-¢24+B.

The solution u = [ug,uy,...,us]" of (8), is the approximation to the
exact solution y of (1).
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3. Truncation error estimate

In this section we shall demonstrate that the cubic spline difference scheme
applied on described mesh is the second order accurate in the discrete max-
imum norm, uniformly in the perturbation parameter €. In order to do that
we use the following Lemma.

Lemma 1. There ezists a unique solution y € C*(I xR) of the problem (1).
This solution satisfies:
(@)l < M1+ 7T/ + e72)e))
forz el andj=0,1,2,3,4. |
It is easy to see that F, as defined in (9), is continiously differentiable on

R™t1, The Frechet derivative F'(z) of F at any z = [z, 21, ..., 2n] ' € R"!
is the tridiagonal matrix

1 0 0
i h ft
F’(Z) = T P
n—1 fa—1 f:—l
0 0 1
where fori =1,2,...,n -1,
fi = =¥y + b7 cy(@i1, 2im1),

f,' = -—627‘,' + b,-cy(m;,z,,-),

fi.+ = —521';*‘ + b?cy(m;+1,zi+1).

Set
— H NI I Sl O

p=amin (1A= 171 15D,
Then there exists a constant p* > 0 which is independent of n» and ¢, such
that g > p* > 0 for all z € S, where S is an open ball in R"*!. According to
the theorem given in [5], the previous inequality implies that F'(z)~! exists
and 1

min{1, p*}’
For a given 2° € R™*! and r > 0, the open ball {z € R**! : ||z — 2%| < 7}
in R™t1 is denoted by §(2°,r).

“F,(z)—l“oo < for z€ 8.
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Theorem 1. Assume that (1) and (3) hold. Then there exists a constant
My > 0 which is independent of € and n, and a constant ng which depends
on My but is independent of €, such that the scheme (8) has a solution
u € R satisfying ||y — v||loo < Mon~™2 for n > ng. Moreover, this solution
u is the only solution of (8) that lies in S(y, Mon~2).

Proof. The truncation error F'y for the function exact solution obtained in
[3] has the form:
" (Fy)i = 662®;/(hi + hiy1)
where . . R
®; = —hip1Ragp1 — ShiRps — Ry + =20
ghivilzin — 3 Roi— Ry + Pt

1
Ry =a-m Ry (i), mio1 < me < @

Using Lemma and analyzing the trunca,tidn error and exact solution we have

)

u—:l

(Fy)i S M€2 ma‘x{h » z+1}(1 + 5_46_

where M is a positive constant independent of £ and n.
In [8] it is obtained that

”Fy”oo S Mln_27

where M; is a positive constant independent of € and n.

— 2M
Set Mo = m

We now prove that there exists a positive integer ng, depending on My but
being independent of &, such that for n > ng

1
-1
”'Fl(z) “00 S min{1,72/2}’

for all z € S(y, Mon=2).
Fori=1,2,...,n — 1 we have
Ay = |fl=1FH =157
2
2¢y(%4, 2;) ~ ‘-—(hi+16y(zi+1, Zit1) + hicy(Ti—1, 2i-1))

2h'z+1

v

(10) ey(2i, zi) — = [hiv162y(Zi, %) + (2i41 — 2)eyy(Fi, 2)]
2h;
- h_[ hi ny(zn %) + (2 — zio1)eyy(%i, 5)]



46 K.Surla,D.Herceg,S.Rapaji¢

where (Z;,%;) is between (2;-1,2i-1) and (z;,2), and (Z;, %) is between
(ziy 2z:) and (Tig1, Zig1)-

By Lemma, |y(z)| < M,, for some positive constant M;. Now

(11) |egy(z, 2)| + |eyy(z, 2)| < M, for (z,2) €I x[-M;—1,M;+1].

Choose n; siuch that Mon=2 < 1 for n > ny. Let z € §(y, Mon~2). Then
|2;] < My + 1, for i = 0,...,n. Consequently, for n > ny

(12) max{|Z|,|%|} < M+ 1, for ¢=1,..,n-1.
Therefore, we estimate |z; — 21| for n > ny and ¢ = 1,2, ..., n with

|l2i — 21| < |z — 9l + |95 — Yica| + lyim1 — zic1] < 2Mon™ + |yi — yical.

Since,
fort; <t
z; A(t) Mshe 1 -2z -
vl =1 [ y@dal=| [ y(@)dal < = (14eTT) < M7
Ti_1 Altiz1) ( i1 ) €

fort,_1 >

/2 4 _
1y: — yi-1] < MhA; +%/ ~Tde < Mh + Me 5?5Mn—1,
/\(T)

fort; 1 <t <t

A(T)
= vial <1 [y @pel 41 [ y()de] < b
Ti-1
From (10)-(12) and the estimates of |z; — z;—1| and |y; — yi—1| we obtain for
n > np that
A >y = Msn™l, i=1,2,.n-1,

where M3 is a positive constant which depends on Mg but is independent
of ¢ and n. Choose ny such that Man=! < 42/2 for n > ny. Then for
n > ng = max{ny,ny} we obtain A; > y%/2,fori=1,2,..,n— 1.
Thus

A; > min{1,7%/2}, i=0,1,..,n
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This yields

1

1F(2) Moo < min{1,72/2}’

S S(y7 Mon_z)

by the theorem given in [5].

This implies that the system Fu = 0 can have at most one solution % in
S(y, Mon—z).

4. Numerical results

In this section we shall present some numerical results obtained using cubic
spline difference scheme on the non-equidistant mesh described in the pre-
vious section.

We shall consider the nonlinear test problem

—e2y" + (V¥ +y - 0.75) (¥  +y—-3.75) =0, y(0)=y(1)=0

for which the exact solution y, is unknown. The mesh I with a = 1,
q = 0.48 and v = 1 is used.

The numerical solving of the nonlinear singularly perturbed boundary
value problem becomes the solving of a system of linear equations, in every
iteration step, using Newton’s method given in [2], which guarantees the
local convergence.

Let
E, = ”ye - u“ocn
where y, ig the exact solution and u is the solution of the discrete ana-

logue. Also, we define in the usual way the order of convergence Ord for
two successive values of n with respective errors F,, and F,,:

In F,, —In Ey,

Ord = )

As the exact solution of our problem is not known, the approximate solution
with n = 1024 points is used instead of it.

The following tables illustrate that the cubic spline difference scheme
used on the decsribed non-uniform mesh of Bakhvalov type is the second
order uniformly convergent.
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n\e 2—3 2—7 2-%, 2-8

8 0.0354202 0.0505455 0.0523618 0.0530485 é'}‘,,
— - - - rd

16 0.0117025% 0.0130909 0.0131023 0.013104 By
1.59775 1.94901 1.99869 2.01731 Ord

32 0.00301112 0.00323265 0.00323298 0.00323298 Ey
1.95844 2.01778 2.01888 2.01907 Ord

o1 7.50417(—14) 8.11532(—4) 8.11602( —4) .11602(—4) En
2.00454 1.994 1.99402 1.99402 Ord

128 1.85434(—4) 2.00457(—14) 2.0047(—14) 2.0047(—4) E,
2.01679 2.01736 2.01739 2.01739 Ord

256 14221(=5) € 7772(=5) 1.77753(—5) 1.77753(=5) B,
2.0681 2.06905 2.08905 2.06905 Ord

a12 8.84452(—6) $.55383(—6) 9.55449(—6) 9.55449(—6) En
2.32188 2.32201 2.32202 2.32202 Ord

Table 1.
n\e 2=7 28 29 2=10

8 0.0533898 0.0535595 0.0536441 0.0536862 OE,,,d

- -_ — - r

16 0.0131042 0.0131043 0.0131043 0.0131044 En
2.02654 2.0311 2.03337 2.03451 Ord

22 0.00323298 0.00323298 0.00323298 0.00323298 En
2.01909 2.0191 2.01911 2.01911 Ord
o1 8.11602(—14) | 8.11602(—4) §.11602(—1) 8.11603(—1) E,
1.99402 1.99402 1.99402 1.99402 Ord
128 Z.0047( —4) 2.0047(—4) 2.0047(—4) 7.0047(—4) -
2.01739 2.01739 2.01739 2.01738 Ord
256 T.77753(—5) 4.77753(=5) 1.77753(—5) 1.77753(—5) En
2.06905 2.06905 2.06905 2.06905 Ord
12 9.55440(—6) 9.55440( —6) 5.55449(—5) 3.55440(—6) En
2.32202 2.32202 2.32202 2.32202 Ord
Table 2.
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