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Abstract

The construction of initial conditions which provide a safe conver-
gence of the considered iterative method is one of the most important
problem in finding the zeros of a given function f. In this paper initial
conditions for the convergence of Tanabe’s method for the simultane-
ous determination of all simple zeros of a polynomial are given. The
established convergence conditions are of practical importance since
they depend only on the available data: coefficients of a polynomial
and initial approximations to the zeros.
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1. Introduction

One of the most important problems in solving polynomial equations
P(Y=z"+a12" ' 4+ +ap124+a,=0

is the construction of such initial conditions which provide a safe conver-
gence of the considered numerical algorithm. There is a lot of results in



52 S.1li¢, Dj. Herceg

the literature which treat this subject, but the presented initial conditions
most frequently depend on unattainable data. In this paper we give initial
conditions for the safe convergence of Tanabe’s method [6] for the simulta-
neous approximation of all simple zeros of a polynomial. These conditions
are of a practical importance because they depend on available data: the
polynomial coefficients ag,ay,...,an,—1, their degree n, and theinitial ap-
proximations z(o) (0) to the zeros (1,...,(y of P.

Let [, = {1,...,n} be the index set and let zfm), ..., 2™ denote ap-

proximations to the zeros (i,...,{; of P at the m-th iteration. Denote
by )
(m
wim = - Pe ) e,
TG 1)
J#E

Weierstrass’ correction appearing in the classical Weierstrass’ method (also
known as Durand-Kerner’s or Dochev’s method)

z§m+1) — zig'm) _ Wi(m) (1, €l,; m=0, 1, .. )

In this paper we will consider the following third-order method for the si-
multaneous approximation of all simple zeros of the polynomial P

‘ n (m)
14
(1) 2™ = ) _ ) (1 -2 (m)) G €lLy;m=0,1,...).

i=1 Z;
J#i

This method has been rediscovered by various authors and it has been de-
rived in a different ways (see, e.g. [1], [2], [4], [5], [6]). In the literature it
is most frequently referred to as Tanabe’s method [6]. In a recent paper
[1], it has been shown that Tanabe’s method can be obtained by applying
Chebyshev’s method to the system of nonlinear equations

fe = (=1 6k(z1,- v zm) —ax =0 k=1,2,...,n

where ¢ denotes the k-th elementary symmetric functions:

Pk = E Zj1 %52 " B

1<j1 < Lrsn

In our analysis we will deal with the following two parameters: the
mazimal Weierstrass’ correction W (™) = max<i<n |VV,-(m)| and the minimal
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distance between approximations d(™ = min;; |z,-(m) —z§m)| (m=0,1,...).
For simplicity, we will sometimes omit the iteration index m and denote the
quantities in the next (m+1)-st iteration by an additional symbol © (“hat”).

2. Some auxiliary results

In the convergence analysis of Tanabe’s method (1) the following represen-
tation of a monic polynomial P has an important role

(2) P(z) = [Xj: +1] H(z z), W;=

where 2p,...,2, are distinct points. This formula is obtained using La-
grange’s interpolation.

Before establishing the convergence theorem for the Tanabe method (1),
we give some necessary estimates using the previous notation.

Lemma 1. If the inequality

d
(3) W = max Wil <

holds, then for i,j € I, we have

in —1 W, 2n+1
i > [1- I_|> ;
@) 3n ' gé;z,'—zJ 3n '
iy 1 dn — 1 in —1
(zz) |2 — zi]| < |W;| < Wd;
e 1 9?2 —4n+1
(321) |% — z;| > Td;

9n? — 8n 4 2

9n? d

(iv) |z — %] >

"W (n—1)(Br%+n—-1)
(v) |§ P i< (2n + 1)(9n — 4n + 1)’
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4 n—1
( 9(n - 1)) )

(vi) HI —z_,

Proof. Of ( i): By the definition of d and (3) we find

|W;| (n-1W n—-1 2n+1
1-— >1- >1- 1- = .
' z, -z ' Z |z, -z = d > 3n 3n
In a similar way we estimate
(n - 1)W n—1 4n-1
1-— <1 1 = .
| —z_7| +Z|,—z_7| L+ d <t 3n 3n
Of (ii): Using (i) we obtain from (1)
W; 4n —1 4n—1
2i — Zi| = i d.
[2; — 2 ZZ,’—ZJ'I< n W] < o
J#
Of (uit): By (ii) one gets
An — 2_4
|2,'—Z_7'|le;—2j|—|2i—2{|>d— n 1d=9n n+1d.

9n? 9n?
Of (iv): In regard to (ii) we find

dn — 1 9n? —8n + 2

5= 531 2 i = 53] = [ = il = 13— 5l > d -2 Tt = T
Of (v): Let
W,
L
— 2i — 2;
J#
Then ( W . - )
n— n— o; n—
4 i < d .
(4) ol < =2 <7 ™ T <2y
From the iterative formula (2) we obtain
w; 1
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so that by (4) it follows

LI 8 Wi W;
|§2—21+1| “,-2;+§éi—2j+l|
_ _ 1 W;
- ll 1-o0; ;éi"zjl
B Wj _ W; o W;
= ll—Uzll —Z] ;zi_zj Uzgz;—zA
| Wiz — % | |m|| |
- ]]_——U,'l i (2;—'2])(21—2]) 1“[‘7:' '_ZJ
3n W3l n—l W]
BRI L Dl et s b m P MY e

Hence, by (ii), (iii) and (3) we estimate
IZ": +1| 3n_ 4n-1 (n—-1)W
ek 2n+1 9n? %E%ﬂdd
M 1 (n-1)W
" Onz—
2n+1 2ni-dnil g:n 14
(n—-1)(4n-1) 3n(n ~ 1)?
(2n+1)(9n2-4n+1) (2n+1)(9n%—-4n+1)
(n—1)(3n%+n—1) '
(2n+1)(9n2 ~4n + 1)’

Of (vi): By (ii), (iv) and (3) we bound

Zi—zj 1 IZJ ZJI 1 énT_ld)

]]-—I#Ei—éjl . H( HPEr |)<E( +———;—+—9"2;f"‘ 24
4n -1 n—1 4 n—1

= (1+9n2—8n+2) <(I-I_Q(n-l))

< 9P~ 156.0

1/4 for n=3,
7/20 for n>4
we have the following assertions:

Let us define a(n) = and W = max; |W;|. Then
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Lemma 2. If the inequality (3) holds, then
(&) Wil < e(n)|Wi;

-

S d
(‘LZ) W < 57—7/

Proof. Putting z = %; in (2), where Z; is a new approximation obtained by
Tanabe’s method (1), we obtain '

P(%) = (%

]H(% - %),

whence

= P(%)

Wiz e—————=(%— %
G- 2) )[Z
i

From the last formula we obtain by (ii), (v) and (vi) of Lemma 1

Wil = _Zzllz —z,+1|Hz,—z]|
an-1 (n-1)Bn%+n-1) 4 ——
< 3n (2n +1)(9n2 — 4n + 1)( + 9(n — 1)) Wi

= z(n)|Wil,

‘where z(n) is given by the expression standing in front of |W;|. It is easy
to show that the sequence {z(n)}n=3,4,... s monotonically increasing with
z(3) 2 0.216 < 1/4 and

7

2
z(n) < z(00) = §e4/9 0.3465 < 0.35 = .

Therefore, we obtain z(n) < a(n) so that |W;| < a(n)|W;| and the assertion
(i) is proved.

9n? ; .
md In regard to thlS,

the inequality (i) of Lemma 2 and (3), we find for each i € I,
a(n)d a(n) 9n2d
3n 3n  9n2 —8n + 2

which proves the assertion (ii). O

From (iv) of Lemma 1 it follows d <

— J
Wil < a(n)[Wi] < <3,
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3. The convergence theorem

In this section we use the assertions of Lemmas 1 and 2 to state the following
convergence theorem for Tanabe’s method (1):

Theorem 1. Tanabe’s method (1) is convergent under the condition

d(0)

(0)
(5) W < — 3

Proof. From the iterative formula (1) we see that the iterative corrections
C’i(m) are given by

wim)
(6) C(m) W(m) (]_ - Z W—) (1, (S In)
i#i ? '

Now we will show that the sequences {]C§m)|} (¢=1,...,n) are monoton-
ically decreasing under the condition (5). Starting from (6) and omitting
iteration indices we find by (ii) of Lemma 1 (which is valid because (ii) of
Lemma 2 holds under the condition (5))

(7) Cil = wi(1-3 ZWJ' )| < 4"3; LWl < j;fIW;I-

PET R

In Lemma 2 (assertion (ii)) the implication W < d/3n = W < d/3n
has been proved. Using a similar procedure, we prove by induction that
the initial condition (5) implies the inequality W({™ < d(™/3n for each
m = 1,2,... . Therefore, by (i) of Lemma 2 we obtain

W) < a(m) W™ (el m=0,1,...).

According to this, the inequalities (i) of Lemma 1 and by (7), we obtain
(omitting the iteration indices)

W
W; (1 — Z o _sz)

~ 4 ~ 4 4
G < 51 < 22y ) L
3 3 3 |1'_-Z ¥ ; |
A AT

4n
2n +1

a(n)|Ci| < 1(n)ICil,
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where y(n) = 2a(n) < 1. Therefore, we have proved that the inequality
™) < y(mlcf™)

holds for each : =1,...,n and m =0,1,... , where

(n) = 1/2 for n=3,
)= 7/10  for n2>4

Similarly as in [3] and [4], let us define disks D,(m) = {z,(m-"l); |C§m)|}
for: € I, and m = 0,1,... . Then, for a fixed ¢ € I,, we have

D™ = ™ - cM™; et = (™) ~ ¢V _clm™1c™)y = ..

= {ZD-cO_ch ... 1t c {2 ri™y,
where :
A = 101+ - 1e I 4 210,
Since
IC < y(n)*ICO) (k = 1,2,...; 7(n) < 1),
we have
7™ < 1GN A+ Am) 4+ () 4 ()™
. 1
< C-(O) + v(n =gnCi(0),
ICON (=g + 7(™) = 9aICE%)
where

2.5 for n=3,

1+79(n) —y(n)?® _
1-9(n) ] 121
30

Therefore, for each i € I,, we have the inclusion

gn = g(¥(n)) =.
for n > 4.

D™ c 8; = {z{"; galCl},
which means that the disk S; contains all disks ng) (m=0,1,...).

The sequence {z,(m)} of the centers of the disks D,(m) forms a Cauchy’s
sequence in the disk S; D ng) (m =0,1,...). Since the metric subspace 5; .
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is complete (as a closed set in C), there exists a unique point 2} € 5; such
that

z}m) — 2

¥ as m—oo and 2] €S;.

In the limit case Tanabe’s iterative formula (1) reduces to

. wr )

(8) Z:=ZZ—P(z;-")(1— E —* *) (te L),
=1 2 %
15

where W = W;(2?). According to (i) of Lemma 1 (which holds due to (5))

there follows W o+ 1 dn—1
Il—gz;-—-]zjle ( In ' 3n )

so that from (8) we obtain P(z}) = 0 for each ¢ € I,. Therefore, the limit

points 27, ..., 2 of the sequences {zgm)}, ey {z&”‘)} are, actually, the zeros

of the polynomial P.

To prove the theorem it is necessary to show that each of the sequences
{zfm)} (¢ € I,) converges to one and only one zero of P. Since z,(m) € §; for
each 7 € I, and m = 0,1,..., it suffices to prove that the disks Sy,...,5,
are mutually disjoint, that is,

|mid S; — mid S;| > rad §; +rad §; = ga(ICV) +1CO)) (i # 7).
According to (7) we have
) < WO < JwO,

wherefrom
4O > 30w 5 2% 0O
4 1

. Iin
Hence, since ry > gn for each n > 3,

9 .
2= 2 d > ZUCOHICN) > galIC1+ICP) = 1ad S +12d S;.

Therefore, the inclusion disks 5i,...,S5, are disjoint, which completes the
proof of the theorem. O '
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