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Abstract

The system of linear partial differential equations (PDE) of the
first order, with initial conditions given by the HEAVISIDE (step)
function, is considered. It is shown that the system can be solved
analytically (in the terms of integrals), where the problem of
numerical quadratures arises. Some integrals are improper
(singular in the upper bound), but considering their convergence
and calculating their principal value (in a CAUCHY sense), the
problem can be successfully solved. In the special case the
achieved results have been significantly simplified and then
compared with the numerical solution obtain-ed by the application
of the finite differences method, namely the up-wind scheme,
which is used most often for that kind of problems. A detailed
analysis of the obtained error, with some graphical illustrations for
various values of parameters, is given. The proposed initial value
problem has several applications, e.g., in semiconductor physics,
where it is a good model for the inter-valley transfer in a two-
valley semiconductor electron devices in the case when the electric
field is stationary and homogeneous.
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1. Introduction

Starting from a system of the first order partial differential equation (PDE) , we
intend to obtain that particular solution (in an analytically closed form) which
satisfies the specifically established initial conditions. The observed PDE
system with the relative-ly general type of initial conditions can be a good
mathematical model for various kinds of problems. In the application we will
consider some physical problems, namely the modelling of some
microelectronic devices operation that hitherto has not been considered in this
exact way.

2. The model

Let us consider the following set of PDEs with respect to the spatial-temporal »,
and n, distribution:
om0 M M

+v ——+—=+G,
(1) ot Ox Ty T,
é’n2+ ony  nmy n
—= 4y, —== +—,
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where x and ¢ are the independent variables. The multiplying factors v, and v,,
as well as 7, and ,, are constant with respect to the independent variables.

In order to solve the PDE system (1) it is necessary to define initial and
/or boundary conditions. Let us assume that:
(2) nl(xao):Cf(x)h(x)a

n2 (x ) 0) = 0’

where £:[0,d] — R is an arbitrary function differentiable on the segment [0, d],
h(x) denotes the HEAVISIDE (step) function, and C is a constant. There is a
physical reason for defying DIRICHLET-type boundary conditions at its
boundaries using h(x). Finally, assume that the addend G in the first equation is
(3) G =Cf (x)h(x)o(t),
where 8(f) is the DIRAC delta function'. The relations (2) are obtained by
integration of system (1) from r=0"to r=0", taking into account only relations

Q).

! Here. as well as in the further text, we use that (customary) name, although it

would be more appropriate to use the phrase “the DIRAC delta distribution”.
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3. Analytical treatment

The problem to be solved (1)-(2) can be recognized as the CAUCHY problem.
For that purpose, the initial conditions are directly expanded in the following
manner:

m(x,0) = Cf (x) h(x),

(4a) @ - ((f I (x)J h(x) + vlf(x)é(x)J
. ny (x, O) = 07
(4b) oy (x,0) _ C

o . J(x) h(x).

Let us try to transform the problem under consideration into a form more
convenient for solving. We shall transform the system of PDE into the equation
of second order with respect to n,, (i = 1, 2). By removing the dependent
variable #, from the system (1) we reduce it to the desirable second-order PDE
OVer i, :

2 2 2
o’n +(v1+vz)é”7 +v1v25n1+(i+12—]—5—’31—+(i+i]én—1:0.

ox? \1, ox \r, ot
(5)
By introducing new independent variables « and 3 via the transformation

t t
(6) a:x—;(v1+v2), ﬂ=‘2‘(V2—V1)
and by replacing », by a new dependent variable w according to
(7) my = WAy (q, p),
where
@ PRSI S S

7V -vy) T -v2)
the equation (5) assumes the following form:
2 2

©) o'w O°w ~o.

2
oo ,/rlrz|v1 vy

The expanded initial conditions (4a) become
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w (@) =w (2,0) =C " *" £ (@) h(a) = v (@) h(a),

wi@) = 2420 ¢ gu Hm[((/l FBY (@) — f'(a>] h(a) +
—2 (a)c?(a)) = v (@ h(@) + ¥ (@)5(a).
1—V2/V1

(10)

The obtained problem (9)-(10) is more convenient for solving than the initial
problem (1)-(4). Equation (10) can be recognized as a Ayperbolic type PDE with
a self-ad-joint inherent operator. The obtained equation is a special case of the
so-called gene-ral telegraphic equation whose special cases are described in [2,
6, 17]. It is solved by using the RIEMANN method. It can be achieved that the
RIEMANN function ¥V is

2
(1) V=] - v ! —Val) i,
0( r—fﬂz ‘\’1 _vz\\/(x vii)(x — v, )J

where JXI(JC) denotes a BESSEL function of the first kind of the #™ order. For the
so-lution of the PDE (9) with the initial conditions (10) we obtain:

w(a—ﬁ,a+,6’):%(w0(a—ﬂ)+w0(a+/}))+
at+f

1 2
S P . _fB_ _ dé& -
+2 JO{H|V1_V2’J(a B-Oa+p é)]wl(é) ¢
“h a+f
e Jl(—z—\ka—ﬂ—@(mﬂ—f)]wo(f)d:.‘
22'1"2"’1_"2| \/2'11'2"’1—"2‘
a-f
(12)
Let us introduce a new variable &
(13) 0:2\/ | @+ p-a-p-9.
717,00 —Vy)

It stems from here that

. 2
_l_l
(14) §:§j(0)=a+-(7)—,fr1r2\vl_v2\ { 4 } _92,

V7172
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where for @ >2¢& is j =1, while & <& implies j =2. From (13) it can be seen
that 0 E{O,—\/_t_—} 1, while for the variables gtj the following limitations are
7172

Vi +V,

valid: &, e[x—vlt,x— 71 42-v2 t] and £, e[x—

transform the obtained solution (12) to enable its use for the starting problem.

£x— vzt}‘ 2 Now we

Also, we utilize the relation 1,(z)=(-#)"J(iz), where I (x) is the modified
BESSEL function of the first kind and »™ order, valid for all complex values z €
C. .
Now we analyze the HEAVISIDE factors in the integrand functions of the
solution implicitly involved in (12). Depending on their non-zero values, the
solution (spatial-temporal dependence) can be split into four parts (not
forgetting that x and ¢ cannot be negative). In the first region x >v ¢ 3is valid;

here the values of the HEAVISIDE functions are h(£ () =h(£,(6) =1.4 The

second region is described by the inequalities V11Va [ <x <v5andinitis
I, >0, , . . .

h(£,(9) = 0 9<g. while h(£,(8) =16 (in the whole region). The third
> C

V1+V2

region is characterized by the relation v,f<x< t7, and there is

1,0<0
h(£,(9)) = { ()’ 9 HC and h(&,(6) =0 (in the whole region). In the remaining
>0 ¢ ‘

- fourth - region is x <v,f and the values of the HEAVISIDE functions are
h(£,(8)) =h(£,(8) =0. In our previous consideration we have introduced a
cutoff value 6, of the variable 6, equal to

ec‘: 2
VP17 2 |V1 ‘V2|
In formula (12) only those addends remain for which h(¢ (#)=1, (i=1,2), is

valid. This suggests that the solution itself can be separated into four different
expressions valid in particular regions which are shown in Figure 1.

(15) JOit = x)(x = vyn).
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Figure 1 Regions (I-1V) in the spatial-
temporal dependence.

>
7
Using the property of the DIRAC & function

b
2 foos - {1 32t}

which stems directly from its definition, we conclude that the result of the
integration of the part of integrand including 6(&,(6) or 8(¢,(6)) depends only

on whether the functions &£ (£) and &£(6) reach zero value in the segment

4
8el0,
EI: ‘VT[ T2

are not equal to zero within this segment, the integral of this part of the
integrand will be equal to zero. This is just what happens in the regions I and
IV. In the regions II and I1I the functions &,(&) and &,(6) change their signs, as
established by the previous analysis of HEAVISIDE func-tions, so that in these
regions the integrals are non-zero.

Finally, by an approriate rearrangement of the addends in the integrated
expression, the obtained solution is reduced to the following formulae:

}8, for the considered values of the variable x. If these function

-for x >vt:
(17a)

YO My - F{O—t JF[O——’—]V
w(x,t) ( (x vlf)—l-t/l (x vzr))+ 1 m +F, ,\/;E :

t
- forvyz=x >E(v, +v,):

t

(17b) w (x, t)—_‘/’(l)(x “Vzt)+Fl[0C’ [z.7 J_D(G’c,t)Jer(O’ rtz- }
172 NE2Y D)

t
- for —2—(v1+v2)2x >Vl
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1
(17¢) w(x,t):iy/g‘)(x v, t)+F,(0,00)-D(0¢ ,t):

-forv,tzx =20

(17d) wi(x,t)=0,

that will be additionally elucidated. We define the functions F'i(a, b) as integrals
given by the following expressions:

(18) Fi(ab)= ”“(@df :
_ (/I‘*_J _ 92
VT1T2
where
(19)

| 01O UE (D) + ———T1,( Dy (£ (O)).

2t 74

Let us remember that the functions y/gl) 9 and ng) 10 are defined in the

psi(O) =

‘,T1T2 |V1 -V
4

transformed expanded initial conditions (10). The functions /" (a, b) have been

introduced to make the expression of the solution (17a-d) less comprehensive,
but they are also algorithm-ically convenient from the aspect of software
implementation.

Consequently, from the nature of initial conditions, namely the part of
the inte-grand comprising the DIRAC delta functions 8(£,(6)) and 3(£,(6)), the -

addend D(8,,, 1) in (17b-c) is:
(20) D(O.r) = Z1¥T1T2 OcTo@c) )

2 2
t
7172
In the expression (18) we calculate the principal value of the integral (v.

p. in CAUCHY sense) in the case of a singularity in the upper boundary.
Finally,

1) ny(x,t) =e by (x 1),
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where the exponential coefficients are
T,—T VaT—V (T
(22) kx = 1 2 : = 242 1“1 ,
717,00 —v3,) 17,00 -Vv3,)
which originated from expressions (6)-(8).
The solution for the function n, can be obtained by an analogous

procedure, bearing in mind that the starting system is reduced to the same
equation (9). The difference is that the expanded initial conditions (4b) are in
this case
w () =w (,0) =0,
23
@ @- @%» =204 4% £ (@) h(a) = v (@) h(a).

The following formulae are obtained:

-for x >v

t f
(24a) ny(x,t) = ki thd [HI[O,——-—] + HZ[O,————]];
VT1T2 NT1T2

t
-forvy 2x >5(v1+v2):

t t
(24b) ny(x t) = ek X tht {Hltac;‘——J +H2(0,—)];
V717, NP

t
- for E(V1 V)2 x >Vt

(24c) ny(x.f) = e HL(0,00);
-for vyt 2x20:
(24d) ny(x,t)=0.

The integrals A (a, ) are defined in the following manner:
b

y

25) H (@) = - Y2172 vl Py (0d0
Y 4

2
e
71T

with the well-behaved part of the integrand function equal to
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(26) Pui(0) = 01, (O y P (£(D).
In this manner we practically conclude the analytic solution procedure,
where the obtained solutions for #,(x, #) and »,(x. 1) are continuous functions.
However, let us note that some of the integrals in (18) and (25) arc
improper. Their form is
b

27) PMﬁ)=Jl£Q$i

a

(b <c), and it can be secen that for ¢=5 they are singular in the upper boundary.
This singularity has the form of an inverse square root. Therefore, the
singularity is re-movable. One can obtain

vb-a
2
(28) P(ab)=2 M
J2b - 82
0

Now we can calculate the obtained integrals by some of the standard methods of
numerical integration, taking care about the nature of the integrand function.

Let us note that in the analytical solution (for which it is said to be
solved in quadratures) there is nevertheless a part which should be calculated
approximately, and this part is the value of the integral. However, bearing in
mind the complexity (the order) of the required approximate methods and
knowing which integrals and initial equations we are dealing with, we conclude
that the proposed methods offer an essential improvement in comparison with
the methods utilized up to date in the analysis of the phenomena under
consideration by approximate solution of some special cases of the CAUCHY
problem (1)-(4).

4. An example of a semiconductor device modelling

The proposed exact treatment of the model described by the PDE system (1)
and by the initial conditions of general type (2) or (4) gives results potentially
applicable in the modelling of electron transport in semiconductor electron
devices. The obtained solution is applied in the special case of electron
concentration profile determination in a p-i-n photodiode. A similar treatment is
applicable for other semiconductor devices where the mentioned basic
assumptions are satisfied (MESFET, HEMT, etc.).

We demonstrate the efficiency of the analytical approach in the
example of a p-i-n photodiode with the absorption layer made of a two-valley
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semiconductor. This efficiency is reflected not only in the quantitative
(numerical) superiority, but also in the possibility of creating a qualitatively
clearer and more detailed picture of carrier transport mechanisms in a two-
valley semiconductors. Although analytical treatment could be more fruitful
than the numerical one, it is not widely applied, not only because one would
have to overcome significant difficulties imposed by such a treatment, but also
bccause there is an uncertainty in establishing of presenting solution in an
analytically closed form, it is considered in {7]. The advantage in rapidity of
reaching the solu-tion (i.e., the number of performed computer operations) is
evident, but we did not measure it explicitly, since the numerical processes
involved are incomparable {3]. It follows from the fact that the numerical
method requires all the previous calculations in the discretization mesh, as
opposed to the analytical one. The quality of the analyti-cal solution becomes
fully visible in the comparative analysis with approximate solution obtained by
purely numerical treatment of the starting equations using the finite difference
method.

4.1 Application of the analytical treatment

In the further text we present the analytical solution obtained in Section 3,
correspond-ing to the particular case f(x)=1. Under this condition the
analytical solution (17a-d) and (24a-d) can be rewritten in a much more
compact form that is simpler and more convenient for effective calculations and
qualitative consideration. After a number of algebraic transformations
(including some integrals from [10]), the expressions for #, and 7, are obtained
in the form:

(29)

t

] 158 T, X+
ngl”(x.-t)=(61_]'+62j)n{(t)_(62]_'-63])(_1)] E‘e ,-1+ek, kit ijl(oya‘c) >

(30) 1§ (x,1)=(81,+82,)np ) = (82, + 83 )1 " H , ,(0,0,),
G=1,2, 3, 4), where the superscript ‘(j)’ corresponds to the particular region
shown in Figure 1. In tlhus compact form of the solution & ; denotes the
KRONECKER & symbol and the ‘main’ quantities #,'(f) are:
Tyhr,
1 1 BT

3la ni@)=C + e ,
Gla) 1) l+t)/7, l+r/7,
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C __tr_l.t?_z
31b my=———|1-¢ - 7
©1b) 2() l+7,/7,

In establishing the expressions (29) and (30) we have taken into account
that the addend (20), stemming from the nature of the initial conditions, has
small influence on the obtained concentration values, and can be neglected. It is
the consequence of the numerical values of the constants, and, generally
speaking, it could not be fulfill-ed. In this special case we have removed all the
possibly existing singularities in the integrals (18) and (25).

Regarding the remaining numerical integration (on the interval (0, 6.))
we have used the ROMBERG method [13], and special care has been granted to
the calculation )
of the values of modified BESSEL functions (see [9]).

4.2 Numerical treatment

The PDE system (1), or the equivalent PDE (9) (a detailed analysis of such
PDEs is given in [16]) is hyperbolic. There are various methods that can be
applied in numeri-cal calculation of the approximate solution of both the
starting and the transformed problem (9)-(10). In our investigation we have
decided to use the method of finite differences directly applied to the initial
problem (1). Since these equations describe the carrier flow, the choice of the
scheme and the discretization steps should be per-formed to accurately describe
the transport process in each step. One of the schemes to be found in the
literature is the so-called upwind scheme [8, 15]. It uses the form of back finite
differences and it has shown good results in the treatment of similar-phenomena
in modelling of two-valley semiconductor devices [5, 11]. Figure 2 shows
schematically the mesh-point relevant in each step. The discretization steps over
time At and position Ax must fulfil the stability criterion which is here given by

%)) Ax = Ar -max {;}.
1
t[Af]
Dy . . .
k+1 Figure 2 Mesh-point for the upwind
k scheme for numerical calculation of
@] [o); the PDE system (1) using (33) in
terms of n."(x, 1), (i=1,2)

g x [Ax]
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In the proposed finite difference form, the problem (1)-(4) becomes the
following system of difference equations: '

(D =D D] vimDEy ef o)
(33) At Ax T, T,
() =)} o) Vi) )} ()
At Ax 7, T,
with the initial conditions
(34a) ()] =C, ()] =0,
(for all j), and boundary conditions
(34b) C Dk =0, (i) =0,

(for all k), where the quantities Ar and Ax are chosen conveniently, and ni*=

nl,'(x, 1), (i=1, 2), are numerically obtained solutions for concentrations. In our

-3 -3
calculations we have adopted the values x=0 (12.5-10 ) Sum and =0 (10 )
60 ps, C =1. Thus we have obtained the values of the normalized concentration
in the conduction band valleys.

4.3 Some notes on the physical background

The electron transport in submicron semiconductor structures is mostly
determined by nonstationary effects. The Monte-Carlo simulation has been
employed [18] to obtain relatively satisfactory results. Nevertheless, due to the
known limitations imposed by the probabilistic approach and its high demands
for computer resources, it cannot remain the only method for the analysis of
transport processes. Another approach is based on the momentum method from
which the hydrodynamic model of transport equation is derived [1, 18]
However, this model is very difficult to solve, which is the reason why its
approximation — the so-called phehomenological model — is used instead (5, 11,
14]. The phenomenological model describes the inter-valley transport in the
relaxation time or transfer time approximation, where these times are functions
of the clectric field [5, 11, 14]. The total electron concentration is determined by
the electron concentrations in the central (I') valley », and in the satellite (X, L)
valleys n, of the conduction band. In our further consideration we assume that
the electric field is sta-tionary, homogeneous, and strong enough, so that
electron diffusion can be neglected. In that case the electron velocity in each of
the valleys is determined by the electric field intensity ¥ and electron mobility
for the particular valley w, :

(33) vi=v(E)=u;(BE)E, (i=12)
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the index ‘7’ corresponds to the central, and ‘2’ to the satellite valleys of the
con-duction band. The electron velocity in the central valley is larger than in the
satellite one (v, > v,). Such a situation is encountered in the case of a p-i-n
photodiode with absorption layer made of a two-valley semiconductor.

The phenomenological model for electrons is defined by (1). In (2) the
“free” addend G denotes generation term for the central valley, the coefficients
r,=7,(E) and 7, =7,(F) are the electron transfer times from the central
into the satellite valley (7, ), and from the satellite into the central one (z,) [3,
11, 14]. The segment [0, d] physically represents the space of the semiconductor
device under consi-deration, where d is the width of the absorption layer
between the p-i-n photodiode contacts. Let us assume that at the initial moment
t = 0 electrons are generated by optical pulse excitation along the absorption
layer only within/the central valley (that implies (3)). This situation occurs when
the reciprocal value of the absorption coefficient & is much smaller than the
absorption layer width (¢ “'<<d). In this case the function describing the

initial conditions is constant, 7.e., f (x)=1.

4.4 The comparative analysis of analytical and numerical solutions
with physical consequences

From the obtained relatively simple expressions (29) and (30) it can be observed
that there is a general exponential time dependence of concentration. Explicit
formulae (29) and (30) point to a certain effect which cannot be observed from
the numerically obtained solutions. In those relation there is practically a new
time constant describ-ing the concentrations in the valleys of the conduction
band. It is equal to the half of harmonic mean of time constants 7, and 7, . In
regions | and I'V the obtained solution does not depend on the variable x. This is
a consequence of the specific initial conditions determined by a constant
function /. On the contrary, in the rest of regions (II and III) that dependence
exists. Besides, in expressions (29)~(30) (cases i = 2, 3) there is an implicit
dependence on v, and v,, which can be seen in formulae (22), (18), (25) and
(15). Only the analytical approach shows that within the region where x >v ¢
the following asymptotic relations are valid:

(36) ¢

—_— > —

l+7,5/1, I+7/7,

(r = ), while generally (in the other regions) the following is valid:
(37 n—0, n,—0.
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However, the relations (36) could be obtained from equation (1), but the restric-
tion for the range of the validity of (36) could not be perceived only from them.
Otherwise, relations (36) and (37) describe the saturation process.

We have performed a comparative analysis of our analytical and the
standard numeri-cal solution for three representative values of the parameter
(electric field intensity £) — for weak (5 kV/cm), intermediate (10 kV/cm) and
strong (30kV/cm) fields activity, when electron "heating" in the semiconductor
is intensive.

Figures 3, 6, 9 and 12, 15, 18 are the graphical illustrations of the
concentrations 7, and #, (obtained according to Subsection 4.1), respectively,
for the characteristic parameter values in a two-valley semiconductor according
to [5, 11] (z,=5 ps), as well as for the maximal values of x (d=35 pum) and ¢ (<
60 ps) relevant for this kind of optoelectronic devices. Figures 4, 7, 10 and 13,
16, 19 show the num cal solution coincide for the most part, which is confirmed
by Figure 5 representing the spatial-temporal dependence of the difference ¢,(x,
f) between these two results. This difference shows clearly that the largest
deviation appears near the straight boundary line x =v, ¢ in the regions II and III.
It 1s obvious that the error is largest at the very beginning of the numerical
procedure, where the “stepped” boundary condition is posed. From the point of
view of the transport processes, this means that the flow of the electrons which
did not leave the central valley (x> v, ) can be successfully described, while the
discrepancy occurs for the transport of the electrons returning from the satellite
valleys into the central one. The use of a more complex algorithm, for example
the “shock-capturing algorithm” (see [4, 12]) can minimize such errors for the
cost of increased requirements for processor time and memory storage.
erically obtained concentrations n1* and n; (subsection 4.2), respectively, and
Figures 5, 8, 11 and 14, 17, 20 depict the values of spatial-temporal distribution
of absolute errors & = #, — n; and & ,=n, — n,, respectively.

At a first glance it could appear that the solutions shown in Figures 3
and 4 are identical. However, we can see the additional information in the
added 2D contour plots. In Figure 3 we can easily see the boundaries of the
regions I and IV, i.e., the straight lines x=v, r and x =v, f, while in the numerical
solution we can see only the boundary of the region I. Also, it can be seen that
for x> vt the analytical and the numerical solution coincide for the most part,
which is confirmed by Figure 5 representing the spatial-temporal dependence of
the difference & (x, r) between these two results. This difference shows clearly
that the largest deviation appears near the straight boundary line x=v, ¢ in the

regions II and III. It is obvious that the error is largest at the very beginning of
the numerical procedure, where the “stepped” boundary condition is posed.
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From the point of view of the transport processes, this means that the flow of
the electrons which did not leave the central valley (x >v, f) can be successtully
described, while the discrepancy occurs for the transport of the electrons
returning from the satellite valleys into the central one. The use of a more
complex algorithm, for example the “shock-capturing algorithm” (see {4, 12])

can minimize such errors for the cost of increased requirements for processor
time and memory storage.

Figure 3
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Spatial-temporal
distribution of the normalized
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(I') valley for the electric field
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Figure 4 Spatial-temporal
distribution of the normalized
concentration nl*(x, f) in the central

(I) wvalley for electric field
intensity £ =5kV/cm

gure 5 Spatial-temporal distribution

of the difference &/(x, ) of the
obtained concentrations 1n the

central (I') valley for the electric
field intensity £ =5kV/cm
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= of the difference &(x, /) of the
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With an increase of the intensity of the electric field £ the difference in
behaviour between the analytical solution (Figures 6 and 9) and numerical one
(Figures 7 and 10) for the concentration 7, becomes more pronounced, although
the absolute value of the difference & decreases (Figures 8 and 11). The
decrement of the absolute error is understandable, since due to the intensive
inter-valley transfer the values of the func-tions # (x, f) and nlt(x, 1) sharply
decrease (toward zero) afier the initial moment, which causes the decrease of
their difference. However, the observed differences show that, following the
strong field activity transport, the applied difference scheme follows with
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increasing difficulties (or does not follow at all), the changes in the regions 11
and III caused by electrons returning from the satellite valley into the central
one.
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The return of electrons from the satellite into the central valley can be
seen in the 3D figures of concentration », as a “hump” spreading through the
regions II and III. It can is marked for extremely strong (£=30kV/cm) electric
fields (Figure 9), while for the field of 10kV/cm the obtained figure is the result
of superposition of the spatial-temporal distributions of the carriers which are
all the time transported through the central valley (region I) and the carriers
returning from the satellite valleys into the central one (regions II and III).
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By applying the exact solution we perceive the dynamics of the carrier
transport and learn that the transport processes within the central valley proceed
through two mechanisms. The primary mechanism is the flow of the carriers
which practically do not leave the central valley during transport, while the
other mechanism is based on the transport of carriers returned from the satellite
valleys into the central valley. The second mechanism, however, cannot be
perceived according to the simple numerical solution which “smoothens™ the
consequences of this mechanism in the diagram showing the spatial-temporal

dependence of electrons within the central valley.
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Figures 14, 17 and 20 show that the absolute discrepancy of these
solutions is extremely small. Of course, the discrepancy is the largest at the
beginning of the numerical procedure, the same as in the case of the central

valley.
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The satellite valleys work like a “reservoir” of electrons during
transport. At the initial moment it accepts the electrons from the central valley,
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and then, after the number of electrons in the central valley is decreased due to
transport, it returns the electrons into the central valley. In this case the
numerical procedure is able to follow correctly the electron transport.

The developed analytical procedure can be applied to those two- and three-
dimension-al models of semiconductor structures where the transport along one

a, (XJO [d..u,]
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intensity £ =30kV/cm
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Figure 20 Spatial-temporal
distribution of the difference £,(x, f) of
the obtained concentrations in the
satellite (X, L) valleys for electric field
intensity E = 30 kV/cm
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of the co-ordinates may be taken as dominant in comparison to the others. Such
situations occur relatively frequently (for example, see [4, 12, 14]).

This analytical technique, unfortunately, does not permit an exact
tretment of multidimensional models of semiconductor structures, regardless of
the other conditions, since system (1) would contain at least one more spatial
variable (v and/or z) and its partial derivative. Nevertheless, for such a system it
is not possible to reliably determine in advance the existence of a solution
which could be represented in an analytically closed form.

Consequently, the analysis describes only the system (1). Since the
transport is one-dimensional, the boundary conditions can be considered only at
the contacts of the device where an electric field is established. The equations
from the system (1) are practically symmetrical with regard to the partial
derivatives over the variables x and ¢. Therefore it is justified to expect that an
analytical solution could also be found in the situation where in the relation (4)
at the boundary x = 0 DIRICHLET and NEUMANN's boundary conditions are
simultaneously given, since the solution proce-dure would then be reduced to
the already presented treatment of the CAUCHY problem.

The presented analytical solution could be used for qualitative and
quantitative description of some other phenomena apart from the mentioned
ones, depending on their character, i.e., the possibility to model them, even only
approximately, by equations (1), or for the different particular initial conditions
of general type (4).

5. Conclusion

The work presents a detailed analysis of a general initial condition problem
capable of describing the transport processes appearing in some two-valley
semiconductor electron devices. A procedure is developed for one-dimensional
exact explicit calculation of the function values (i.e., concentrations) », and n,

for arbitrary values of the independent variables x and ¢, according to the
expressions (17a-d), (21) and (24a-d). It is shown that a PDE system can be
solved analytically (in quadratures), i.e., it can be reduced to the problem of
calculating of numerical values of integrals /. and H ,, (i =1, 2), according to

(18) and (25). Some of these integrals may be improper, but bearing in mind
their convergence, some difficulties arising due to the singularity in the upper
boundary can be easily overcome. However, in the proposed special case,
describing the operation of p-i-n photodiodes, that problem disappears, and the
obtained express-ions become more compact and significantly simpler for
numerical calculation. The results are compared with the numerical solution
obtained using the finite difference method by applying the so-called upwind
scheme which is used most often for that kind of problems. A detailed analysis
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is given of the obtained error, with graphical illustrations for various
representative values of parameters. Apart from the de-scribed advantages, the
analytical treatment offers an additional possibility to in-dependently calculate
the concentrations », and », in an arbitrary position x and at an arbitrary
moment ¢, while in the numerical solution there is unavoidable limitation due to
the discretization of the starting problem. The numerical method also requires
all the previous calculations in the discretization mesh, which significantly
increases the amount of time spent on calculations when compared to the
implemented analytically obtained formulae.

The accuracy of calculating of n, and n, is substantially improved in
comparison with the methods of their calculation applied until now. The
proposed insight into the transport mechanisms and the described physical
phenomena becomes general, as opposed to the analyses known to the authors.
The presented method also provides a new and very important possibility of
optimization of the electric field parameter values, in order to obtain the desired
optimal concentrations #», and #, . Let us note at the end that, bearing in mind
the accuracy of the analytical and numerical procedure, the obtained solution
could serve as a kind of “standard” for assessing the efficiency of particular
approximate methods for solution of the considered class of PDE systems.
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