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Abstract

In the first part of the paper we focus on the different reasons
for introducing generalized functions. The second part is devoted to
different classes of generalized functions. We follow three directions:
Generalized functions as continuous functionals defined on some spaces
of smooth functions or on a space of holomorphic functions; cohomo-
logical definition; generalized functions as elements of a field or a ring
which extend the ring of continuous functions or the ring of smooth
functions. We also analyze some properties of the mentioned spaces of
generalized functions and the possibilities of solving partial differential
equations in them.
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1. Introduction

The introduction and developement of mathematical structures led to an
important economy of mathematical thinking, but it also led to the creation
of more general mathematical tools which were able to meet increasing de-
mands coming from other parts of the science and from the growing number
of users.
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The second half of the 20th century was a period of a great advancement
of science in general, and one expected that mathematics will surmount the
limitations of traditional analysis. However, the latter could not offer so-
lutions for the various mathematical models, or give justifications for some
elements (for example é distribution), or accept some operations with ab-
stract elements (for example with derivatives or some divergent integrals)
introduced by physicists or engineers. This gave rise to the introduction
of generalized functions, whose theory and applications are presently being
very developed.

A model of a phenomenon or proces consists of operations which are very
restrictive; mostly they are given by partial derivatives or integrals. There-
fore,in classical analysis solutionsof such models had to have very special
properties. The natural solutions related to these phenomena or processes
failed sometimes to satisfy the model, for being without such properties.

The first ideas to overcome this situation were to introduce approximate
and weak solutions to partial differential equations and finite part of diver-
gent integrals. But in all these cases one remained in the narrow frame of
the classical analysis.

A real progress has been made by introducing generalized functions. Let
us analyze the objective and the concept of the introduction of generalized
functions.

First, one has to choose a class of numerical functions which have to be
generalized. Such a class is Ly, (locally integrable functions), because it is
very reach; we do not know how to construct a bounded function which is
not Lebesgue integrable in a compact set in R™.

Second, find a set M with an algebraic structure defined by a linear
and at least a multiplicative operation, which contains a subset N isomor-
phic to Lj,.. The restriction on Lj,. of the linear and multiplicative opera-
tions should be the addition and the multiplication in Lj,.. Moreover, the
”derivate” in N should be defined as a continuous operation, the restriction
of it giving on C! (set of functions with continuous derivatives) the classical
derivative.

The set M has not to be too reach, but it should be large enough to
contain abstract elements used by physicists, as §, 62, ..., to be complete and
the mentioned operations be continuous.

In the creation of such a new set M with its elements and operations
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three directions were essantial importance:

- Generalized functions as continuous functionals defined on some basic
vector spaces of smooth functions, which extend the vector space of locally
integrable functions.

- Cohomological definition of generalized functions.

- Generalized functions as a field or a ring which extends the ring of L.,
the ring of continuous functions, or the ring of smooth functions.

The different classes of generalized functions have given step by step a
rigorous mathematical sense to some new objects or new operations with
them, introduced by physicists. But, an ideal set M with all the proper-
ties we sought has not been constructed yet. Therefore, we shall list some
most important spaces of generalized functions with their properties and
imperfections.

2. Generalized functions as linear continuous func-
tionals

We shall start with the class of generalized functions defined as dual spaces
of some basic spaces. Clearly, the smaller is the basic space, the more
continuous functionals will be in its dual space.

2.1. Distributions

We shall first analyse Schwartz’s distributions (see [19]).

Let 2 be any open set in R™. We denote by D(Q2) the vector space of
smooth functions ¢ with suppy compact set in R™ belonging to £ (suppy
is the closure of the set {z € Q;¢(z) # 0}. The topology in D() is defined
in such a way that {¢;} C D(Q) converges to zero as j — oo if there exists
a compact set K C § such that suppy; C K for every ¢; € {¢;; j € N}
and every partial derivative

DPpj(z) = DRt 4Prpi(2) — 0, j — o0,

L1y-0Tn

uniformly in 2 € K, where p = (p1,...,p,) € (NU0)".



148 B.Stankovié

The space of distributions D’(Q2) is the strong dual of D(Q2); elements of
D’(Q) are continuous linear functionals on D(Q). We write for f € D/(Q) :
@ — (f,¢). D'(Q) is not empty; L;,.(2) C D'(R), every f € Ly, defines a
distribution f

(F.9) = [ 1@)la)ds, ¢ € D(Q).

In D’(Q) there are elements which are not defined by functions. Such an
element is the é—distribution: ¢ — ¢(0).

By the axiom of choice one can prove the existence of linear non-continuous
functionals, but not a single one has been constructed to this day.

If @ = R™, then we write for short D'(R") = D’.

The support (the singular support) of a distribution f € D'(Q2) is the
set of z € ) for which do not exist an open neighbourhood V(z) such that
f(z) =0 (f(z) = ¥(z); ¥(z) € C®(Q),z € V(x)). We write for short
supp f(sing supp f).

If for the basic space we take the whole of C*(£2) D D(2), then the dual
space is E'(2) C D’(Q), where E'(Q2) is the space of all distributions with
compact supports belonging to 2.

Another subspace of D’ which is often used is the space S’ of tempered
distributions. In this case the basic space is

S = {p € C™; I]iim |z¥ DPp(z)| — 0, for every k,p€ NI = (NUO0)"}.

The basic properties of D’ are:
1. L, C D

2. If € C*™ and f € D/, then the product ¢ f : ¢ — (¥ f, ) for every
¢ € D is defined by (¢ f, ¢) = (f,¥p). We point out that we can multiply a
distribution only by a smooth function.

L. Schwartz [18] has proved the impossibility (in a precise sense) of the
multiplication of distributions, i.e. the non-existence of a differential algebra
A containing, the algebra C(R) as a subalgebra, preserving the differenta-
tion of functions of class C1(R) with Leibnitz’s rule and the constant 1 as
the neutral element in A.

3. Every distribution has all derivatives and they are continuous; they
have been defined by: (D?f,¢) = (f,DP¢), p = (p1,...,P) € Nj. If the
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distribution f is defined by a function which has a first partial derivative

%, 1 €7 < n, then the derivative Dy, f is defined by the function

For any generalized function f we have:
D:L‘.'(D.’L‘J'f) = D:L'J'(D:L'J'f) = Dg,»,zj.ﬁ
If ¥ € C*°, the Leibnitz formula holds true for ¥ f.
Let {ur} C Lioe(Q). If the series

f
Az,

(o]

Z uk(z) = f(z), z €4,

k=0
converges uniformly on every compact set K C (2, then it can be derived

term by term and the obtained series converge in D'(), as well.

How much we have extended Lj,, by D’ it has been precisely stated by
the following theorem

Theorem [19] Any distribution is locally a partial derivative of a continuous
function.

From this theorem it follows that distributions constitute of the smallest
vector space in which is permitted to differentiate infinite times all contin-
uous and locally integrable functions.

4. Differential equations in D’.

Theorem [19, T I, p. 130} For every (By,...,Bn) € D' x ... x D’ and
A;jxr €C*®, j,k=1,..,m, the system

ar; & )
.:i_] + Z Ajk(m)Tk = B], ] - 1,...,m,
z k=1

has infinite solutions. The difference between two of them is a solution of
the homogeneous system, and it is a smooth function, the usual solution of
the homogeneous system.

If B;, 1 =1,...,m, are continuous functionous, then the system has only
classical solutions.

A differential equation which has no classical solutions is the following

"™ (z)=0, n>m> 1
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But it has a solution in D’ ([22], p. 127 )

m—1 n—1 m—1
u(z) = Y e H(2)a™ 1 F 4+ N b (@) + S diat,

where ¢, and dj are any constants and H is the Heaviside function.

Consequently, for differential equations the theory of distributions do
not bring much novelty. That is the theory of partial differential equations
which had an important influence on the developement of distributions and
other generalized functions.

5. Partial differential equations in D’ (with constant coefficients).

We denote by P(D) a linear differential operator with constant coeffi-
cients

P(D)= S aD', Slai #0, i= (i1, ..., in) € (N UO)",

fi|<m.

where 7| = i1 + ... + tp.

Definition [3, T II, p. 50, 55] An open set Q is called P—convez for
the support (for the singular support) if for every compact set K C  there
exists a compact set K' C Q such that for every ¢ € C*(Q) (¢ € E'(R)) and
suppP(—D)y € K (sing suppP(-D)y € K), it follows that suppy C K’
(sing suppy C K').

Theorem [3, T II, p. 61] The equation P(D)u = f has a solution
u € DV(Q) for every distribution f € D'(Q) if and only if Q@ is P—convez
for the support and for the singular support, as well,

Theorem. (Malgrange-Ehrenpreis). Every differential operator with

constant coefficients P(D) # 0 has a fundamental solution in D', that is,
there ezists a solution of the equation P(D)E = §.

Theorem. [22, p. 196] Let E be a fundamental solution for the operator
P(D), and let the convolution E  f ezists for f € D’. Then there ezists a
solution in D’ to equation P(D)u = f, and it is of the form u = E x f.

6. General linear partial differential equation in D’.

For most systems of linear partial differential equations with variable
coefficients distributions solutions do not exist. One of the first example, a
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very simple one, has been given by H. Lewy {10]. The following equation:
. Ou du
—_—— -1 + 2i(xy + Z.’Eg) = f(z)
has no solution in D’(V) for any f € C*, but not analytic, and any point

zo € R3, where V; is an open neighbourhood of z,.

The relation between generalized solutions belonging to D’ and classical
ones is given by

Theorem. [22, p. 193] If f € C(Q) and if a solution v in D' to the
equation

(2) > ai(z)D'u = f(z)

i <m
belongs also to C™(Q), then it is a classical solution of this equation in Q.

7. The Fourier transform of f € S’ is defined by (Ff,¢) = (f,Fp), ¢ €
S.

The Fourier transform is a linear isomorphism S’ onto §’. It is a contin-
uous operation. :

We do not know how to define the Fourier transform for every distribu-
tion.

2.2. Ultradistributions

The space of ultradistributions is the dual space of the space of a non-quasi-
analytic class of smooth functions.

Let M,, p=0,1,..., be a sequence of positive numbers. We impose the
following conditions on M, : My = My = 1 and

(Ml) ]‘47)2 < Mp—lMp+17 PrP= 1,2,...
(M.2) There are constants A and H such that
M, < AHPM M, _,, 0<qg<p, p=0,1,..

o M, _
M.3) el
(M.3) pgl M,

Definition. ([5]). Let K C R™ be a compact set and let h > 0. We
denote by Dg\/{”} the space of all f € C®(R™) with support in K which
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satisfies
1D fllca) < CA* My, ol = 0,1, ...

for some constant C > 0. Then

(My) s . - {Mz}.h
D) = gl P

DM} (Q) = ind lim ind lim D {MH*,
Kcch

h—0

The elements of D(™#)'(Q) will be called the ultradistributions of Beurl-
ing type and the elements of D{Mr}(Q) ultradistributions of Roumieu type.
Let us denote by x either (M,) or {M,}. Similarly, we obtain the space
E*'(8) (see [5]).

An operator of the from

o0
(2) P(D)= > axD% a,€C
|e|=0

is called an ultradifferential operator of class (M,) (of class {M,}) if there
are constants L and C (for every L > 0 there is a constant C') such that
laa| < CLI /M), ol =0,1,...

D* contains D’ but its new properties are not very different. The most
interesting new property is that we can introduce ultradifferential operators
in D* as well as operations with them.

Theorem. (/5] Theorem 6.8). Let P(D) be an ultradifferential operator
of class *, then it maps D*' into D*', it is a linear and continuous mapping
and

P(D)f = Z ao D f,

Ja|=0

where the series converges absolutely in D'*.

3. Cohomological definition of generalized functions

3.1. Hyperfunctions

Hyperfunctions have been defined in quite different ways. We shall use
Sato’s cohomological definition ([16], [17]). Denote by H}.(O) the n—th
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derived sheaf of the sheaf of holomorphic functions O, then the sheaf of
hyperfunctions B is, by definition, B = H%.(0O), regarded as a sheaf on
R™.

A proof that the sheaf D’ of distributions and the sheaf D(M») of yltra-

distributions of the Gevrey class (M, = (p!)?, s > 1) of the Beurling type
are subsheaves of the sheaf B of hyperfunctions one can find in [6].

In order to discuss the new possibilities of hyperfunctions we shall men-
tion only some results from the theory of differential equations in B.

Theorem (/6]). Let

d Ui d

—) = ()5, a: € AQ
(3) Ples ) = L ale) g o€ AW)
be an ordinary differential operator and A be the space of real analytic func-
tions. For any f € B(Q), there is a solution u € B(Q) to the equation

(4) P(z, (%)u(z) = f(z), z € Q.

A direct consequence that B is a flabby sheaf is:

Corollary. If Q' C Q is also an open set in R, then any solution
u € B(QY) to (4) can be extended onto a solution @ € B(2) on Q.

For a linear differential operator (1) with constant coefficients we have.

Theorem ([7]). Every partial differential equation P(D)u = f has a
solution in B for any f € B.

For a partial differential equation defined by linear differential operators
with the coefficients belonging to A, P. Shapira [20] gave a contreexample
similar the mentioned one by H. Lewy for distributions.

3.2. Fourier and Laplace hyperfunctions

Fourier hyperfunctions have been defined in various ways (see [4], [16],[20]).
They can be also defined as linear continuous functionals. We shall use
Sato’s definition, linking them to the adopted definition of hyperfunctions.

Denote by D™ the radial compactification of R™, O will be the sheaf on
D™ +iR" defined as follows: For any open set U C D™ +iR", O(U) consists
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of those elements of O(U N C™) which satisfy |F(z)] < Cy.exp(¢|Rez|)
uniformly for any open set V ¢ C™,V C U and for every ¢ > 0. Then the
sheaf of Fourier hyperfunctions Q = H}.(O).

The Fourier transform acts as a topological automorphism of Q. The
space Q extends the space S’ of tempered distributions and §' — Q(—
means a continuous imbeding).

Komatsu ([8] and [9]) introduced another subsheaf of hyperfunctions,
the sheaf of Laplace hyperfunctions, in order to make foundation of the
Heaviside calculus.

4. Algebras of generalized functions

Let us remark that all the spaces we listed are only vector spaces. We shall
now define generalized functions with a richer algebraic structure.

4.1. Mikusinski’s field of genralized functions

In the set L;,.[0,00) the convolution f* g = [y f(t — u)f(u)du is defined.
With operations + and *, L;,;[0, c0) is a commutative ring without divisors
of zero. It can be extended to a field M, the field of Mikusiniski operators
[11] and [12]. We know that there exist elements of M which are not
distributions and distributions which are not in M. But M and D’ have a
common part. M has a rich algebraic structure, but very poor topological
one. With the field M we have a rigorous mathematical theory for Heaviside
calculus and a generalization of the classical Laplace transform [12]. But for
partial differential equation this theory does not give much, espec1a]ly if we
have boundary conditions.

4.2. Rosinger’s algebraic view and Colombeau’s new general-
ized functions

Two very closed ideas have been elaborated shedding more light on the non-
linear problems, Rosinger’s algebraic view and Colombeau’s new generalized
functions.
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Let

T(D)= Y ci(z) [ D, e;e C*(R"),1<i<h.
1<i<h 1<7<ks

Rosinger ([15] Chapter 6) constructed a chain of algebras {A7;j € N} such
that .
D'(Q)CA® — .. - Al — ... = A°

(the arrows mean algebra homomorphisms) and T(D) maps A7 into A*, j -
k > m, where m = max|p;;|/,1 <1< h,1 <7<k,

Let T(D)U(z) = f(z),z € Q, f € C>°(2). We can construct a sequence
of smooth functions s € (C*(Q))" (A is an arbitrary infinite index set )
such that s € $7,7 € N and U; = s + Vi C Al 4 8§87/Vi j € N. We have
then in a sense

(5) T(DYU; = fe A% j,ke Nk +m < 4.

The sequence of smooth functions s is called a generalized solution to
equation (5). If A = N, then s is called the weak solution to equation (5).
For the solutions in this sense see [15, Chapter 7).

For the Colombeau new generalized functions we follow the simplified
version as it has been done in [2] and [13], and present some results con-
cerning partial differential equations.

The space Eps(Q) consists of families G of smooth functions in £, € €
(0,1), such that for every K CC © and o € N there exists N > 0 such that
sup |D?G(z)| = O(e V), z € K; N(Q) consists of families G, € Ep(Q)
such that for every K CC Q, a € N} and r € R sup |D*G(z)| = O(¢").

The space of Colombeau’s generalized functions, G((2), is defined by
En(Q)/N(L).

If in these definitions we have the families of complex numbers instead
of smooth functions, then we obtain the space Eps9, Np and C = Ep9/Np
respectively. C is called the space of Colombeau complex numbers.

G ~ 0 means that G has a representative G, such that Ge = o(1) as
¢ — 0. If G1,G, are in G(Q), then G, 2 Gy if (G1 — G, @) ~ 0 for every
¢ € D.

C>(Q) is a subalgebra of G(2). The Schwartz impossibility result im-
plies that C(£2) can not be a subalgebra of G(Q2). G(£2) contains D’(2). The
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definition of G(£2) can be modified so as to include D*' () too. An open
question is: Is it possible to make this modification of definition of G(£2)
such that G(Q) includes also hyperfunctions, [2]?

For the nonlinear partial differential equations in G({2) one can consult
for example [2]. To illustrate we give

Theorem [14] Let

n—1
(6) P(2,D) = ame(2)DP + 3. 3 a0, (z)D°Df, v € ;
k=0 |a|<k

we suppose that there exist C > 0 and 1 > 0 such that |an, (z)| > CeV, z €
Q, € € (0,n). Then there ezists a solution G € G(R2) to

Pz, D) TV H inQ, Glua=0, HecGQ),

where P(z, D) is a representative of P(x, D).
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