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Abstract

The paper gives a systematic analysis of the convergence condi-
tions used in comparison theorems, proven for a few types of ma-
trix splittings representing a large class of applications. The cen-
tral idea of this analysis is the scheme of condition implications de-
rived from the properties of regular splittings of a monotone matrix
A= M — Ny = My — N;. Equivalence of some conditions are
an autonomous character of the conditions M{l > Mz_l > 0 and
AIN; > A7LN; > 0 are pointed out.
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1. Introduction

Let us consider the iterative solution of the linear equation system
(1) Az = b,

where A € R"*" is a nonsingular matrix and z,b € R".

Traditionally, a large class of iterative methods for solving equation (1)
can be formulated by means of a suitable splitting of the matrix A

(2) A=M-N with M - nonsingular,
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and the approximate solution z(® is generated as follows
Mz = N2 45 t>0

or equivalently,

(3) ) = M7IN2® 4 MY, ¢ >0,

where the starting vector z(%) is given.

The convergence analysis of the above method is based on the spectral
radius of the iteration matrix o(M ~1N). The iterative method is convergent
to the unique solution
(4) z=A"1b
for each 29, if and only if o(M~1N) < 1. For large values of ¢, the solution
error decreases in magnitude approximately by a factor of o( M ~1N) at each
iteration step; the smaller is (M ~1N), the quicker is the convergence. Thus,
the evaluation of an iterative method focuses on two issues: M should be
chosen as an easily invertible matrix and o(M~1N) should be as small as
possible.

Definition 1.1. The decomposition A = M — N is called a convergent split-
ting of A, if A and M are nonsingular matrices, and o(M~1N) < 1.

General properties of a splitting of A (not necessarily convergent), useful
for proving comparison theorems, are given in the following lemma [15].

Lemma 1.1, Let A= M — N be a splitting of A. If A and M are nonsin-
gular matrices, then
(5) M7INAT = A"INMY,

the matrices M~'N and AN commute, and the matrices NM~! and
NA~! also commute.

Proof. From the definition of the splitting of A, it follows that
6) M l=(A+N)1=ATTT+NAHY =T +AN) 4!

or

(7) AV =M 1y MIINATT = M 4 AN M
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which implies that
M7INA™ = A"INMTL

Hence

M7 NAT'N=AT'NM'N or NM7'NA'=NA"!NM~!. O
From the above lemma, the following corollary can be deduced.

Corollary 1.1 Let A= M — N be a splitting of A. If A and M are nonsin-
gular matrices, then both matrices M1 N and A™'N (or NM~! and NA™!)

have the same eigenvectors.

Historically, the idea of splittings of matrices has its scientific origin in
the regular splitting theory introduced in 1960 by Varga [9] and extended
in 1973 by results of the author’s thesis [10] (recalled in [15]). These first
results, given as comparison theorems for regular splittings of monotone ma-
trices and proven with natural hypotheses by means of the Perron-Frobenius
theory of nonnegative matrices [9], have been useful tools in the convergence
analysis of some iterative methods for solving systems of linear equations
[10-13,15,16].

Further extensions for regular splittings have been obtained by Csordas
and Varga [2]| in 1984, and from this time a renewed interest in comparison
theorems, proven under progressively weaker hypotheses for different split-
tings, has been permanently observed in the literature. These new results
lead to successive generalizations and were accompanied with an increased
complexity in the verification of hypotheses. Therefore, some comparison
theorems may have more theoretical than practical significance. Theorems
proven under different hypotheses, for a few types of splittings of monotone
matrices representing a large class of applications, have been reviewed in
[19].

The main objective of this paper is a systematic analysis of the con-
vergence conditions derived from their implications for the regular splitting
case and discussed in the next section. Further generalizations are presented
in Section 3.
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2. Regular Splitting Theory

At the beginning we recall the basic results of Varga.

Definition 2.1. (/9])
The decomposition A = M — N is called a regular splitting of A, if M is a
nonsingular matriz with M—! > 0 and N > 0.

Theorem 2.1. ({9]) Let A = M — N be a regular splitting of A. If
A1 >0, then

(8) Q(M'"IN) = % < 1

Conversely, if o(M™1N) < 1, then A™' > 0.

Theorem 2.2. ([9]) Let A= My— Ny = My — N, be two regular splittings
of A, where A1 > 0. If Ny > Ny, then

o(M'Ny) < o(M5 ' Na).
In particular, if Ny > Ny with Ny # Ny, and if A1 > 0, then

o( M7 Ny) < o(M5'Ny).

Theorem 2.2 allows us to compare spectral radii of iteration matrices only
in the Jacobi and Gauss-Seidel methods [9]. The excellent convergence prop-
erties of iterative AGA algorithms [10,11,13,15] encouraged further studies
one of the results being the following theorem.

Theorem 2.3. ([10,15]) Let A = M; — Ny = My — Na be two regular
splittings of A, where A=' > 0. If Ml"1 > M{l, then

o(M7'Ny) < o( M5 Ny).
In particular, if A~* > 0 and M;' > M{l, then

Q(Ml_lNl) < g(M{lNz).
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The main result of the application of this theorem is the generalization
of the Stein-Rosenberg theorem for the iterative prefactorization methods
in an irreducible case [10,15].

It is easy to verify that for regular splittings of a monotone matrix A
(i.e,, A7 >0), —~
(9) A=M, - N, =M; - Ny,

the assumption of Theorem 2.2

(10) Ny >N 20

¢
implies the equivalent condition
(11) M2 > M 20
but the last inequality implies the condition of Theorem 2.3, i.e.,
(12) MY > Mt > 0.
From the inequality (10) one obtains the inequality A7!N, > A71N; >

0. Since by the relation (8) o(M~!N) is a monotone function with respect
to p(A™1N), the result of Theorem 2.2 follows immediately.

In the case of the proof of Theorem 2.3, the condition (12) can be ex-
pressed as follows

(13) (I+A7IN) A7 > AN (T + N, A7)t
which, after relevant multiplications, is equivalent to
(14) ATIN, AT > ATIN, AT > 0.

From the above inequality, one obtains

(15) ATIN,ATIN, > (47N > 0,
and .
(16) (A7IN,)?2 > A7IN; AN, > 0.
Hence,

(17) 0*(A7IN;) > o(A"INLATIN,) = o(ATIN, ATIND) > 2 (A7 V)
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which gives us
(18) o(A7INz) > o(A7' 1)

and by the result (8), the inequality
(19) o(M{' V1) < o(M5" )

can be deduced. ~_

In the case of the strict inequality in (12), similar considerations lead to
the strict inequality in (19) [10,15].

On the other hand, from the inequality (10), one obtains
(20) ATIN, > ATIN, >0,

which implies the inequalities (14), (15) and (16), and additionally

(21) AT'N{ATIN, > (A7IN)E > 0,
and
(22) (A7IN,)2 > ATIN,ATIN, > 0.

The inequality (11) gives us that
(23) ATTMy > A7 My >0,
since for each regular splitting of A
(24) AT'M =1+ AN,
hence, it is evident that both conditions (20) and (23) are equivalent.

Each of the above conditions, except (16) and (22), leads to proving
the inequality (19), however, as can be shown on simple examples of reg-
ular splittings the reverse implications may fail. Thus, the above inequali-
ties being progressively weaker conditions to those used as the hypotheses
in comparison theorems, provide successive generalizations of results. The
conditions (14); (15), (16), (21) and (22); (20); and (23) were considered by
Csordas and Varga [2]; Beauwens [1]; Marek [4]; and Song [8] respectively.

The scheme of implications of the above conditions is demonstrated in
Figure 1. Both conditions D) and E) are equivalent by the relation (24).
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The conditions C) and D) imply the condition G) equivalent, again by (24),
to the condition F). The condition C) implies indirectly only the conditions
H1) and H2), whereas the condition E) implies directly all conditions H1),
H2), H3) and H4).

o f

[A) Mz ¥i20 ] = [ B) M2 M 20 | = D) A > Ay, >0 |
i [—F) ATM A > AT M A =0 i

i”c)“]w}i ;’XE@T} \ E) A='Ny > A\, 37)J
[ G) A-'NaA ' > ATN AT >0 ]

H1) A7'NATYN 2 (AT'N)2 >0

H2) (A7'N)2> AT'NATING 2 0

| ’

H3) AT'NATIN; 2 (AN > 0
Ha) (A7'N,)?P > ATINATIN 20

Figure 1. Scheme of condition implications for regular
splittings of A = M| — Ny = My — N3, where A= > 0.

It seems to be interesting to ask, does a dependence exist between the
condition C) playing the essential role in the conjugate type iterative solvers
[14], and the condition E)? To give the answer to the above question, let us
consider for the following matrix [15]

1 -1 0 2 21
(25) A= 0 1 -1 where A™'=|1 2 1
-1 0 2 111
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As can be easily noticed for

M > My (My # My), oM\ V1) = 3 < o(M;'N2) = 7= whereas
ATIN, ¥ A7V, ,
and for

A7INy > A7'N3, o(M3'N3) = % < o(M;'Ny) = % whereas M3 ¥
M
Thus, the above regular splitting examples show us that both conditions

C) and E) have an autonomous character, and there is no even a precursor
relation between them.

Some results for the condition C) and regular splittings of monotone
matrices, derived with a different fineness of block partitions, have been
recently obtained in [17].

3. Non-negative Splitting Theory

In fact, the conditions of the regular splitting of a monotone matrix 4 =
M-N
(1) M™1>o,
II) N>0

imply

(ITITa) M™'N >0,
(IVa) AN >0

and extra conditions

(IITY)  NM™' >0,
(IVd) NA™1>0

important in convergence analysis as well. Thus, the principle of regular
splitting is based on six conditions.

Both matrices M~'N and NM~! (as well as A~!N and NA~!) have
the same eigenvalues because they are similar matrices. It may occur that
for the splittings (9) none of conditions given in Figure 1 is not satisfied,
but the following lemma holds '
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Lemma 3.1. ([15]) Let A = M;— Ny = My — N, be two regular splittings
of A, where A=1 > 0. If M{'Ny > NoM;' > 0 or A7IN; > NaA;Y >0,
then

o(M{'Ny) < o(M5 ' Ny).

The firs¢ extension of the regular splitting case is due to Ortega and
Rheinboldt [7] who introduced the class of weak regular splittings, based on
the conditions (I), (I11a) and (I11b), for which Theorems 2.2 and 2.3 hold.
However, it is necessary to mention that some authors [3,5,8], using the same
name ”"weak regular splitting”, restrict this definition to its weaker version
based on the conditions () and ([IIa) only. In this case of weak regular
splitting, Elsner [3] showed that the assumption M; ! > M{l > 0 may be
not a sufficient hypothesis for ensuring the inequality (19) and he stated
result of Theorem 2.3 for the case when one of splittings is regular omne.
This means that Elsner restored the need of the condition (I/11b) sticking
originally of the Ortega and Rheinboldt’s definition. This topic is discussed
in detail in [18].

In two last decades a renewed interest of comparison theorems, proven
for different types of splittings and assumptions, is observed in the literature
[1-6,8,15]. The Varga’s definition of regular splitting became the standard
terminology in the literature, whereas other splittings are usually defined as
a matter of author’s taste. The definitions of splittings, with progressively
weaking conditions and consistent from the viewpoint of names, are collected
in the following definition [15].

Definition 3.1. Let M, N € IR™*™. Then the decomposition A = M — N
is called:

(a) a regular splitting of A if M= > 0 and N > 0.

(b) a non-negative splitting of Aif M1 >0, M~IN >0 and NM~! >
0.

(c) a weak non-negative splitting of A if M—! > 0 and either M~1N > 0
(the first type) or NM~! > 0 (the second type).

(d) @ weak splitting of A if M is nonsingular and either M~IN > 0 (the
first type) or NM~! > 0 (the second type). In particular a given weak
splitting can be both types.

(e) a convergent splitting of A if g( M™'N) = o(NM~1) < 1.
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The definition assumed in item () is equivalent to the definition of weak
regular splitting of A introduced originally by Ortega and Rheinboldt [7].
However, as was mentioned, the case with M~! > 0and M~!N > 0 without
the condition NM~! > 0 (corresponding to weak non-negative splitting of
the first type) is also defined as a weak regular splitting of A = M — N by
other authors, but in this case it is necessary to use additional assumptions
in comparison theorems. It should be noticed that the use of the Ortega
and Rheinboldt’s terminology "weak regular” in item (b) causes a confusion
with using the splitting name in item (c). Therefore, it seems that assuming
the term "non-negative” allows us to avoid this confusion. The definition
of the first type weak splitting of A has been introduced by Marek and
Szyld [5], but it is again called ”splitting of positive type by Marek [4] and
non-negative splitting” by Song [8].

The splittings defined in the successive items of Definition 3.1 extend
successively a class of splittings of A = M — N for which the matrices N
and M~! may lose the properties of non-negativity. Distinguishing both
types of weak non-negative and weak splittings leads to further extensions
allowing us to analize cases when M ~! N may have negative entries, if N M ~!
is a non-negative matrix, for which Lemma 3.1 may be used as well.

Conditions ensuring that a splitting of a nonsingular matrix A= M - N
will be convergent are unknown in a general case. As was pointed out in {15],
the splittings defined in the first three items of Definition 3.1 are convergent
if and only if A=1 > 0.

The properties of weak non-negative splittings are extensively analyzed
in [15] for the conditions of implication scheme demonstrated in Figure.
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