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DANIELL-GRECO-STONE REPRESENTATION TYPE
THEOREM FOR AUTOCONTINUOUS FROM ABOVE
FUNCTIONALS
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Abstract. A Daniell-Stone type representation of monotone autocontin-
uous from above functional by integral with respect to monotone auto-
continuous from above set function is given.
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1. Introduction

The representations in the sense of Daniell-Stone of non-additive functionals
with integrals with respect to monotone non-additive set functions were inves-
tigated by B. Anger {1], G.H. Greco [7], R.C. Basanezi, G.H. Greco [2], D.
Deneberg [4], D. Schmeidler [17].

In this paper we shall investigate the representation by special monotone set
functions so-called autocontinuous from above set functions. These set functions
are special null-additive set functions, which include many important classes of
set functions ({19}, [20], [11], {12], [13], [14],[15],[16]). We shall prove a general
representation theorem using the method of subgraphs of functions given by
J. Kindler [10]. As special cases we obtain representations by submodular and
supermodular set functions.

2. Autocontinuous from above set functions

Let £ be a lattice of subsets of the given set X such that # € L.

Definition 1. A set function m,m : L — [0, c0| with m(#}) = 0 is called null-
additive, if we have

m(A U B) = m{A)
whenever A,B € L;ANB ={ and m(B) = 0.
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For properties of null-additive set functions see E. Pap [15], [16], H. Suzuki
[18] and Z. Wang [19].

Definition 2. A set function m s called autocontinuous from above (resp. from
below) if for every € > 0 and every A € L, there exists § = §(A,€) > 0 such that

m(A) —e <m(AUB) <m(A) +e (resp. m(A)—e¢ <m(A\ B) <m(A)+¢)
whenever B€ LLANB =W (resp. BC A, A\ B € L) and m(B) < ¢ holds.

Let £ be a lattice of subsets of the given set X. For any monotone set function
m : L — [0, 00] we define an outer set function m* on P(X) by

m*(E):=inf{m(F): EC FeL}.
In the proof of the main result we shall need the following property of the set
function m* which is invariant with respect to monotonicity and autocontinuity.

Proposition 1. If m is a monotone and autocontinuous from above set function
“on a lattice L of subsets of a given set X, then the corresponding outer set
function m* is also monotone and autocontinuous set function on P(X).

Proof. We can easily prove the monotonicity of m*. Take A, B € P(X). In the
case m*(A) = oo, the statement is true. Let ¢ > 0. By the definition of m* we
choose A from L such that A C A} and

(1) m(AL) < m*(A) +e.
By the autocontinuoity from above of m there exists § = §(¢, A7) > 0 such that
m(A] UB) < m(A}) + —;—

whenever m(B) < 6, B € L.
Let B € P(X) be such that m*(B) < £. Then by the definition of m* we have

that for 0 < & < £ there exists B] € £ such that
m(By) < m*(B) +§'.

Therefore
m(B]) < é.
Then by the autocontinuity from above of m
(2) -m(A U B,) < m(4}) + g

Hence by the monotonicity of m*, (2) and (1)
m*(AU B) < m*(A] U B]) = m(A] U B}) < m(A}) + % <m*(A)+e

So we have proved the theorem.

Open problem: Let m be monotone and null-additive set function. Is m*
null-additive too?
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3. Integral and functionals

Let F be a family of functions f : F — [0, oo] which satisfy the conditions:

af, fAa, f—fAaeF (feF,ael0,0)) (Stone condition),

fAg, fvgeF (f,ge F) (Lattice condition).

The family pf all upper level sets of the function f is denoted by Uy, i.e.

U i={{z: flz)>t}:te 0,0} U{ {x: f(x) >t} :te0,o00]}.

A class of functions F, C F is comonotonic (common monotonic) if

User,Us

is a chain. A class of functions F, is comonotonic iff each pair of functions from
F, is comonotonic. The equivalent condition for a pair of functions f and g to
be comonotonic is that there is no pair x1,x2 € X such that f(z;) < f(x2) and

g9(z1) > g(z2).

Let m : P(X) — [0,00] be a monotone set function with the property
m(P) =0 and f: X — [0, 00| a function, then m({x : f(x) > t}) is a decreasing
function on [0, oo].

For a monotone set function m : £ — [0, oc] and an upper m-measurable func-
tion f: X — [0, 00| the Choquet integral is defined by

/fdm = /Ooom({n::f(n:) > t))dt.

Let M Dbe a functional M : F — [0, c0]. We list the following properties of
M for every f,g € F and every a € [0, 00) :

(F1) f<g = M(f) < M(g) (monotonicity);

(F2) M(f+g)=M(f) + M(g)
for comonotonic f and g such that f + g € F (comonotonic additivity);

(F3) limayo M(f — f Aa) = M(f) (lower marginal continuity);
(F4) lim, oo M(f Aa) = M(f) (upper marginal continuity);

(F5) (Ve > 0)(36 > 0)(Vg e F)(Vf € F)
(M(g)<é = M(fVg)<M(f)+e) (autocontinuity from above);
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(F6) M(fVg) = M(f) whenever M(g) =0 (null-additivity);
(F7) M(fvg)+M(fArg)<M(f)+M(g) (submodularity);
(F8) M(fVg)+M(fAg)>M(f)+M(g) (supermodularity).

Remark 1. Conditions (F1) and (F2) imply the positive homogeneity of
M, ie. M(af)=aM(f) for any a € [0, ).
4. The main result

Let F be the same as in the previous section.

Definition 3. For a given class of functions F,f : X — [0,00]. o monotone
set function m : P(X) — [0,00] and a functional M : F — [0,00| we say that
m represents M if we have

M(f) = / fdm (f € F).

Now we have the following representation theorem.

Theorem 1. If M is a functional M : F — [0, 0] with the properties (F1)
- (F5), then there exists a monotone autocontinuous from above set function
m: P(X) — [0,00] which represent M.

Proof. We define twe monotone set functions for any E € P(X)

o(E) = sup{M(f) : f € F, f < xu)

B(E) :=inf{M(f): feF, xpg<f}.

We shall prove that the set function m := 3 is autocontinuous from above and
it represents the functional AJ.
We define for f: X — [0, 00]

Gy :={(z,t) : (z,t) € X x [0,00), t < f(x)}.
Since F satisfies the lattice condition we have

GfUngvag, GfﬂGg:Gf,\g.

Therefore
L :={Gy : f € F} is a lattice of subsets of the set X. We introduce a set

function g on £

wW(Gr) = M(f) (f € F).
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By
Grc Gy & f<yg

we obtain that p is a monotone set function. Now we shall use the property
(F5) of M. If we suppose u(Gy) < &, then also M(f) < § holds. Then, the
condition (F'3) implies

wGrUGy) = 1(Grvg) = M(fV g) < M(f) +e=pn(Gy) + ¢,

i.e. p is autocontinuous from above.

By Proposition 1 the outer set function p* of 4 is also monotone and autocontin-
uous from above. Then the restriction of p* to P(X) given by pu*(Gy,,) (F €
P(X)) is also monotone and autocontinuous from above, since

Gy <Gy, & ECF,

GXlsul«' = GXI'] U GX["'

This set function p* is equal to the set function m. Namely, we have for every
EeP(X) '
m(E) =inf{M(f): xg < f € F} =inf{u(Gy: G,,, CGy € L} = 1" (Gy,,)-

Now we shall prove that m represents the functional A{. For that purpose
we take for a function f € F its approximation by the functions f,, ()

1 o
fn.(-T) = %Eiil le>§éT("E)'
Since we have

i+1 i< < 1 ’ 3
211 —.13/\51;_Xm>5§7_.’13/\?2:—£/\ 211 s

x A

we obtain using Remark 1.

1

2‘:1

t—1
211

).

o fnl<a(f> =) <mif>

f/\ 271 211. - 211

)52"M(f/\2—i—f/\

Since the functions f A 2+ — f Al € F are comonotomnic we obtain using the
property (F2) of M and summing up the last inequalities

n2" -1 i1 i 1 n2" -1 i n2"—1 ° i i1
M( Y (P =fAga) S gn Do mlf > 57) SM Y- (FAge=fA—)):

=1 i=1 i=1
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Hence
M(f/\n— f/\ 51';'1') < /fn.dm < N[(f/\ (”'— '217)) < J\[(f)

Since the functions (f— fA1)A(n—1) and (fAL1—(fAL)A ) are comonotonic
and the following representation is true

f/\n—f/\il'—l = (f/\n—f/\l)+(f/\1—f/\%) = (f—f/\l)/\(n—1)+(f/\1~(f/\1)/\%).
we obtain by the property (F2) of M
M(f/\n—f/\z—ln-) =M((f—fAl)A(n—1))+AI((fA1—(f'A1)A51,7))-

Therefore by the properties (F3) and (F4) of M

nli_’r{.loM(f/\n—f/\-;:) — M(f = FAL)+M(fAL) = M(]).

ie, M(f) =lim, o [ fudm.
Now we shall prove that

By the inequality
fAR=fAg < fu< ]

we have
™ 1
/l m({z: f(z) > t})dt =/(f/\n—f/\ ﬁ)dm
R 00
< /f,,dm < /fdm =/0 m{{x: f(x) > t})dt.

Letting n — oo we obtain the desired equality.

Corollary 1. If M is a functional M : F — [0, 00} with the properties (F1) -
(F4) and (F7) (or (F8) ), then there exists a monotone submodular (supermodu-
lar) autocontinuous from above set function m : P(X) — [0, 00| which represent

M.
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