DANIELL-GRECO-STONE REPRESENTATION TYPE THEOREM FOR AUTOCONTINUOUS FROM ABOVE FUNCTIONALS

Endre Pap¹

Abstract. A Daniell-Stone type representation of monotone autocontinuous from above functional by integral with respect to monotone autocontinuous from above set function is given.

AMS Mathematics Subject Classification (1991): 28A10

Key words and Phrases:null-additive set function, autocontinuous from above set function, autocontinuous from above functional

1. Introduction

The representations in the sense of Daniell-Stone of non-additive functionals with integrals with respect to monotone non-additive set functions were investigated by B. Anger [1], G.H. Greco [7], R.C. Basanezi, G.H. Greco [2], D. Deneberg [4], D. Schmeidler [17].

In this paper we shall investigate the representation by special monotone set functions so-called autocontinuous from above set functions. These set functions are special null-additive set functions, which include many important classes of set functions ([19], [20], [11], [12], [13], [14], [15], [16]). We shall prove a general representation theorem using the method of subgraphs of functions given by J. Kindler [10]. As special cases we obtain representations by submodular and supermodular set functions.

2. Autocontinuous from above set functions

Let \mathcal{L} be a lattice of subsets of the given set X such that $\emptyset \in \mathcal{L}$.

Definition 1. A set function $m, m : \mathcal{L} \to [0, \infty]$ with $m(\emptyset) = 0$ is called null-additive, if we have

$$m(A \cup B) = m(A)$$

whenever $A, B \in \mathcal{L}, A \cap B = \emptyset$ and m(B) = 0.

¹Institute of Mathematics, University of Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Yugoslavia

For properties of null-additive set functions see E. Pap [15], [16], H. Suzuki [18] and Z. Wang [19].

Definition 2. A set function m is called autocontinuous from above (resp. from below) if for every $\epsilon > 0$ and every $A \in \mathcal{L}$, there exists $\delta = \delta(A, \epsilon) > 0$ such that

$$m(A) - \epsilon \le m(A \cup B) \le m(A) + \epsilon$$
 (resp. $m(A) - \epsilon \le m(A \setminus B) \le m(A) + \epsilon$)
whenever $B \in \mathcal{L}$, $A \cap B = \emptyset$ (resp. $B \subset A$, $A \setminus B \in \mathcal{L}$) and $m(B) < \delta$ holds.

Let \mathcal{L} be a lattice of subsets of the given set X. For any monotone set function $m: \mathcal{L} \to [0, \infty]$ we define an outer set function m^* on $\mathcal{P}(X)$ by

$$m^*(E) := \inf\{m(F) : E \subset F \in \mathcal{L}\}.$$

In the proof of the main result we shall need the following property of the set function m^* which is invariant with respect to monotonicity and autocontinuity.

Proposition 1. If m is a monotone and autocontinuous from above set function on a lattice \mathcal{L} of subsets of a given set X, then the corresponding outer set function m^* is also monotone and autocontinuous set function on $\mathcal{P}(X)$.

Proof. We can easily prove the monotonicity of m^* . Take $A, B \in \mathcal{P}(X)$. In the case $m^*(A) = \infty$, the statement is true. Let $\epsilon > 0$. By the definition of m^* we choose A_1' from \mathcal{L} such that $A \subset A_1'$ and

$$(1) m(A_1') \le m^*(A) + \epsilon.$$

By the autocontinuoity from above of m there exists $\delta = \delta(\epsilon, A_1') > 0$ such that

$$m(A_1' \cup B) < m(A_1') + \frac{\epsilon}{2}$$

whenever $m(B) < \delta$, $B \in \mathcal{L}$.

Let $B \in \mathcal{P}(X)$ be such that $m^*(B) < \frac{\delta}{2}$. Then by the definition of m^* we have that for $0 < \delta' < \frac{\delta}{2}$ there exists $B_1' \in \mathcal{L}$ such that

$$m(B_1') \le m^*(B) + \delta'.$$

Therefore

$$m(B_1') < \delta$$
.

Then by the autocontinuity from above of m

(2)
$$m(A'_1 \cup B'_1) < m(A'_1) + \frac{\epsilon}{2}.$$

Hence by the monotonicity of m^* , (2) and (1)

$$m^*(A \cup B) \le m^*(A_1' \cup B_1') = m(A_1' \cup B_1') < m(A_1') + \frac{\epsilon}{2} \le m^*(A) + \epsilon.$$

So we have proved the theorem.

Open problem: Let m be monotone and null-additive set function. Is m^* null-additive too?

3. Integral and functionals

Let \mathcal{F} be a family of functions $f: \mathcal{F} \to [0, \infty]$ which satisfy the conditions:

$$af, f \wedge a, f - f \wedge a \in \mathcal{F} \ (f \in \mathcal{F}, a \in [0, \infty))$$
 (Stone condition),

$$f \wedge g$$
, $f \vee g \in \mathcal{F}$ $(f, g \in \mathcal{F})$ (Lattice condition).

The family of all upper level sets of the function f is denoted by \mathcal{U}_f , i.e.

$$\mathcal{U}_f := \{ \{x : f(x) > t\} : t \in [0, \infty] \} \cup \{ \{x : f(x) \ge t\} : t \in [0, \infty] \}.$$

A class of functions $\mathcal{F}_o \subset \mathcal{F}$ is comonotonic (common monotonic) if

$$\cup_{f \in \mathcal{F}_o} \mathcal{U}_f$$

is a chain. A class of functions \mathcal{F}_o is comonotonic iff each pair of functions from \mathcal{F}_o is comonotonic. The equivalent condition for a pair of functions f and g to be comonotonic is that there is no pair $x_1, x_2 \in X$ such that $f(x_1) < f(x_2)$ and $g(x_1) > g(x_2)$.

Let $m: \mathcal{P}(X) \to [0,\infty]$ be a monotone set function with the property $m(\emptyset) = 0$ and $f: X \to [0,\infty]$ a function, then $m(\{x: f(x) > t\})$ is a decreasing function on $[0,\infty]$.

For a monotone set function $m: \mathcal{L} \to [0, \infty]$ and an upper m-measurable function $f: X \to [0, \infty]$ the Choquet integral is defined by

$$\int f dm := \int_0^\infty m(\{x : f(x) > t\}) dt.$$

Let M be a functional $M: \mathcal{F} \to [0, \infty]$. We list the following properties of M for every $f, g \in \mathcal{F}$ and every $a \in [0, \infty)$:

- (F1) $f \leq g \Rightarrow M(f) \leq M(g)$ (monotonicity);
- (F2) M(f+g) = M(f) + M(g) for comonotonic f and g such that $f+g \in \mathcal{F}$ (comonotonic additivity);
 - (F3) $\lim_{a\downarrow 0} M(f-f\wedge a) = M(f)$ (lower marginal continuity);
 - (F4) $\lim_{a\to\infty} M(f \wedge a) = M(f)$ (upper marginal continuity);
- $\begin{array}{ll} (\mathrm{F5}) & (\forall \epsilon > 0)(\exists \delta > 0)(\forall g \in \mathcal{F})(\forall f \in \mathcal{F}) \\ (M(g) < \delta \ \Rightarrow \ M(f \vee g) < M(f) + \epsilon) & \textbf{(autocontinuity from above)}; \end{array}$

- (F6) $M(f \vee g) = M(f)$ whenever M(g) = 0 (null-additivity);
- (F7) $M(f \vee g) + M(f \wedge g) \leq M(f) + M(g)$ (submodularity);
- (F8) $M(f \vee g) + M(f \wedge g) \ge M(f) + M(g)$ (supermodularity).

Remark 1. Conditions (F1) and (F2) imply the positive homogeneity of M, i.e. M(af) = aM(f) for any $a \in [0, \infty)$.

4. The main result

Let \mathcal{F} be the same as in the previous section.

Definition 3. For a given class of functions $\mathcal{F}, f: X \to [0, \infty]$, a monotone set function $m: \mathcal{P}(X) \to [0, \infty]$ and a functional $M: \mathcal{F} \to [0, \infty]$ we say that m represents M if we have

$$M(f) = \int f dm \quad (f \in \mathcal{F}).$$

Now we have the following representation theorem.

Theorem 1. If M is a functional $M: \mathcal{F} \to [0, \infty]$ with the properties (F1) - (F5), then there exists a monotone autocontinuous from above set function $m: \mathcal{P}(X) \to [0, \infty]$ which represent M.

Proof. We define two monotone set functions for any $E \in \mathcal{P}(X)$

$$\alpha(E) := \sup\{M(f) : f \in \mathcal{F}, f \le \chi_E\}$$

$$\beta(E) := \inf\{M(f) : f \in \mathcal{F}, \ \chi_E \le f\}.$$

We shall prove that the set function $m := \beta$ is autocontinuous from above and it represents the functional M.

We define for $f: X \to [0, \infty]$

$$G_f := \{(x,t) : (x,t) \in X \times [0,\infty), \ t < f(x)\}.$$

Since \mathcal{F} satisfies the lattice condition we have

$$G_f \cup G_g = G_{f \vee g}, \quad G_f \cap G_g = G_{f \wedge g}.$$

Therefore

 $\mathcal{L} := \{G_f : f \in \mathcal{F}\}$ is a lattice of subsets of the set X. We introduce a set function μ on \mathcal{L}

$$\mu(G_f) := M(f) \quad (f \in \mathcal{F}).$$

By

$$G_f \subset G_g \iff f \leq g$$

we obtain that μ is a monotone set function. Now we shall use the property (F5) of M. If we suppose $\mu(G_f) < \delta$, then also $M(f) < \delta$ holds. Then, the condition (F5) implies

$$\mu(G_f \cup G_g) = \mu(G_{f \vee g}) = M(f \vee g) < M(f) + \epsilon = \mu(G_f) + \epsilon,$$

i.e. μ is autocontinuous from above.

By Proposition 1 the outer set function μ^* of μ is also monotone and autocontinuous from above. Then the restriction of μ^* to $\mathcal{P}(X)$ given by $\mu^*(G_{XE})$ $(E \in \mathcal{P}(X))$ is also monotone and autocontinuous from above, since

$$G_{YE} \leq G_{YE} \iff E \subset F$$

$$G_{\chi_{E\cup F}} = G_{\chi_E} \cup G_{\chi_F}.$$

This set function μ^* is equal to the set function m. Namely, we have for every $E \in \mathcal{P}(X)$

$$m(E) = \inf\{M(f) : \chi_E \leq f \in \mathcal{F}\} = \inf\{\mu(G_f : G_{\chi_E} \subset G_f \in \mathcal{L}\} = \mu^*(G_{\chi_E}).$$

Now we shall prove that m represents the functional M. For that purpose we take for a function $f \in \mathcal{F}$ its approximation by the functions $f_n(x)$

$$f_n(x) := \frac{1}{2^n} \sum_{i=1}^{n2^n - 1} \chi_{x > \frac{i}{2^n}}(x).$$

Since we have

$$x \wedge \frac{i+1}{2^n} - x \wedge \frac{i}{2^n} \leq \chi_{x > \frac{i}{2^n}} \leq x \wedge \frac{i}{2^n} - x \wedge \frac{i-1}{2^n},$$

we obtain using Remark 1.

$$f \wedge \frac{i+1}{2^n} - f \wedge \frac{i}{2^n} \le \alpha(f > \frac{i}{2^n}) \le m(f > \frac{i}{2^n}) \le 2^n M(f \wedge \frac{i}{2^n} - f \wedge \frac{i-1}{2^n}).$$

Since the functions $f \wedge \frac{i}{2^n} - f \wedge \frac{i-1}{2^n} \in \mathcal{F}$ are comonotonic we obtain using the property (F2) of M and summing up the last inequalities

$$M(\sum_{i=1}^{n2^n-1}(f\wedge\frac{i+1}{2^n}-f\wedge\frac{i}{2^n}))\leq \frac{1}{2^n}\sum_{i=1}^{n2^n-1}m(f>\frac{i}{2^n})\leq M(\sum_{i=1}^{n2^n-1}(f\wedge\frac{i}{2^n}-f\wedge\frac{i-1}{2^n})).$$

Hence

$$M(f \wedge n - f \wedge \frac{1}{2^n}) \le \int f_n dm \le M(f \wedge (n - \frac{1}{2^n})) \le M(f).$$

Since the functions $(f-f\wedge 1)\wedge (n-1)$ and $(f\wedge 1-(f\wedge 1)\wedge \frac{1}{2^n})$ are comonotonic and the following representation is true

$$f\wedge n - f\wedge \frac{1}{2^n} = (f\wedge n - f\wedge 1) + (f\wedge 1 - f\wedge \frac{1}{2^n}) = (f - f\wedge 1)\wedge (n-1) + (f\wedge 1 - (f\wedge 1)\wedge \frac{1}{2^n}).$$

we obtain by the property (F2) of M

$$M(f \wedge n - f \wedge \frac{1}{2^n}) = M((f - f \wedge 1) \wedge (n - 1)) + M((f \wedge 1 - (f \wedge 1) \wedge \frac{1}{2^n})).$$

Therefore by the properties (F3) and (F4) of M

$$\lim_{n\to\infty} M(f\wedge n - f\wedge \frac{1}{2^n}) = M(f - f\wedge 1) + M(f\wedge 1) = M(f),$$

i.e., $M(f) = \lim_{n \to \infty} \int f_n dm$.

Now we shall prove that

$$\lim_{n\to\infty}\int f_ndm=\int fdm.$$

By the inequality

$$f \wedge n - f \wedge \frac{1}{2^n} \le f_n \le f$$

we have

$$\int_{\frac{1}{2^{n}}}^{n} m(\lbrace x : f(x) \ge t \rbrace) dt = \int (f \wedge n - f \wedge \frac{1}{2^{n}}) dm$$

$$\leq \int f_{n} dm \leq \int f dm = \int_{0}^{\infty} m(\lbrace x : f(x) \ge t \rbrace) dt.$$

Letting $n \to \infty$ we obtain the desired equality.

Corollary 1. If M is a functional $M: \mathcal{F} \to [0, \infty]$ with the properties (F1) - (F4) and (F7) (or (F8)), then there exists a monotone submodular (supermodular) autocontinuous from above set function $m: \mathcal{P}(X) \to [0, \infty]$ which represent M.

References

- [1] Anger B., Representation of Capacities, Math. Ann. 229 (1977), 245-258.
- [2] Bassanezi R.C., Greco G.H., Sull'additivita dell'integrale, Rend. Sem. Mat. Univ. Padova 72 (1984),249-275.

- [3] G.Choquet, Theory of capacities, Ann. Inst. Fourier (Grenoble), 5 (1953-1954), 131-292.
- [4] Denneberg D., Lectures on non-additive measure and integral, Kluwer Academic Publishers, Dordrecht, 1994.
- [5] Dobrakov I., On submeasures I, Dissertationes Mathemat. CXIII (1974).
- [6] Drewnowski L., On the continuity of certain non-additive set functions, Colloquium Math. 38 (1978), 243-253.
- [7] Greco G.H., Sulla reppresentazione di funzionalli mediante integrali, Rend. Seni. Mat. Univ. Padova 66 (1982), 21-42.
- [8] Hardy G.H., Littlewood J.E., Polya G., Inequalities, Cambridge University Press, Cambridge, 1952.
- [9] Huber P.J., Robust Statistics, Wiley, New York, 1981.
- [10] Kindler J., A Simple Proof of the Daniell-Stone Representation Theorem, Amer. Math. Monthly 90 (1983), 396-397.
- [11] Murofushi T., Sugeno M., Pseudo-additive measures and integrals, J. Math. Anal. Appl. 122 (1987), 197-222.
- [12] Pap E., Lebesgue and Saks decompositions of ⊥- decomposable measures, Fuzzy Sets and Systems, 38 (1990), 345-353.
- [13] Pap E., A generalization of a theorem Dieudonne for k-triangular set functions, Acta Sci. Math. 50 (1986), 159-167.
- [14] Pap E., The Vitali-Hahn-Saks theorems for k- triangular set functions, Atti. Sem. Mat. Fis. Univ. Modena, 26 (1987), 21-32.
- [15] Pap E., The range of null-additive, Fuzzy Sets and Systems 65 (1994), 105-115.
- [16] Pap E., Lebesgue decomposition of null additive set functions, Univ. u Novom Sadu Zb. Rad. Prirod. Mat. Fak. Ser. Mat. (to appear).
- [17] Schmeidler D., Integral Representation without Additivity, Proc. Amer. Math. Soc. 97 (1986), 255-261.
- [18] Suzuki H., Atoms of fuzzy measures and fuzzy integrals, Fuzzy Sets and Systems, 41 (1991), 329-342.
- [19] Wang Z., The autocontinuity of Set Function and the Fuzzy Integral, J. Math. Anal. Appl. 99 (1984),195-218.
- [20] Weber S., ⊥-decomposable measures and integrals for Archimedean t-conorms, J. Math. Anal. Appl. 101 (1984), 114-138.

Received by the editors February 10, 1994.