Novi SAD J. MATH.
Vor. 29, No. 1, 1999, 9-18

PSEUDO-OPERATIONS ON FINITE INTERVALS
Endre Pap', Nebojsa M. Ralevié ?

Abstract. A characterization of associative, commutative, monotone
operation with neutral element on finite interval of reals is given. Using
these results a complete characterization of one class of semirings on finite
intervals is obtained.
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1. Introduction

Many different kinds of operation defined on subsets of real nuinbers play
fundamental roles in many important fields as for example in fuzzy set theory,
fuzzy logic, neural nets, operation research, optimization problems, differential
equations, etc. Special intention is paid to operations defined on interval of reals.
The examples are t-norms and t-conorms which act on the interval [0, 1], (see
Schweizer and Sklar {14]), pseudo-additions and pseudo-multiplications in the
sense of Sugeno and Murofushi [15] which act on the interval [0, oo] or in the
sense of E. Pap [10] which act on the interval [a,b](—c0 < a < b < +oc).
compensatory operators (Klement, Mesiar, Pap [5]), and uni-norms (Fodor,
Yager, Rybalov [3]).

In this paper we investigate pseudo-operations on a finite interval. The
first result in this direction was given by Mostert and Schields [9] and then
the problem was investigated in more detail by Ling [6] (see also Aczél [1]).
We use all these characterizations and, combining them with the representation
theorems by ordinal sums (Schweizer and Sklar [14], Fuchs [4]) and the newest
results of Klement, Mesiar, Pap [5] and Fodor, Yager, Rybalov [3], we obtain
the complete description of pseudo-operation on finite intervals. These results
enable us to completely characterize one class of semirings on finite intervals.
The notion of semiring today plays an important role in many branches of
mathematics, for example: optimization theory, and automate theory, nonlinear
differential equations (see Maslov, Samborskij [7], E. Pap [12]). There are still
two open problems. The first, to characterize semirings on infinite intervals.
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The second problem is to cousider generalization of semirings in the sense that
the distributive law of pseudo-multiplication with respect to pseudo-addition
holds only in a restricted domain of the interval (conditional distributivity).
Such situations often occur in the integration theory.

2. Associative binary operations on intervals

First, we give some general definitions. Let A be an arbitrary non-empty
set.

Definition 1. Let R be a binary operation on A and a € A.

a) The function v, : A — A defined by v,(x) = R(a, ) is the vertical section
of R.

b) The function h, : A — A defined by ho(x) = R(w,a) is the horizontal
section of R.

c) The function 6 : A — A defined by 6(x) = R(x,x) is the diagonal section
of R.

d) The R-powers of a are the elements of A given recursively by
U =a : ot = R(a(n),a)
foralln € N,

We have )
& (z) = =2,

forne N, z € A

Definition 2. The element « € A is a null element or the annihilator of the
operation R: A2 — A if

(Vz € A)(R(z,u) = R(u,2) = u).

The neutral element and annihilator (if they exist) of a binary operation are
uniquely determined and they are always different (for card(A4) > 1).

Definition 3. The element x € A is idempotent in relation to the operation
R:A%? - Aif
R(z,z) = §(z) = x.

Definition 4. The operation Ry : A? — A is distributive in relation to the
operation Ry : A2 — A if

(an Y,z € A) RZ(RI ("Ea y)a 2) = R] (R‘z(ﬂ::r z)i R?('U» Z))
holds.



Pseudo-operations on finite intervals 11

Now we shall restrict ourselves on operations defined on the intervals of reals.

Definition 5. Let A = [a,b] be an interval of the set of real numbers R. An
operation R: A% — A is said to be nondecreasing in each coordinate if

(Vzy, 22,91, 92 € A)(xy S 22 Ay S w2 = R(vy, ;) < R(xz,u2)).
We have by [14] the following theorem.

Theorem 1. Let [a,b] be a closed interval and R : [a,b]* — [a, b] an associative
operation nondecreasing in each coordinate and having a neutral element e = b.

Then

i) All vertical sections vy, all horizontal sections h, and the diagonal section
6 of R are nondecreasing functions on |a, b|.

ii) The endpoint a is an annihilator of R;
i) (Vz,y € [a,b]) R(z,y) < min(z,y).
iv) (Vz € [a,8]) 6(c) < =.

v) If t—l-ii-n—o 8(t) = =, for some x in (a,b], then §(v) = x.

Analogously, we have in the following theorem.

Theorem 2. Let [a,b] be a closed interval and R : [a,b]? — [a,b] an associative
operation which is nondecreasing in each coordinate and which has a neutral
element e = a. Then

1) All vertical sections v, all horizontal sections h, and the diagonal section
of 6 are nondecreasing functions on [a,bl.

1) The endpoint b is an annihilator of R.

iit) (Vz,y € [a,d]) R(z,y) > max(z,y).

w) (Vz € [a,b]) 6(x) > x.

v) If t_l}il_li_o 6(t) = z, for some z in [a,b), then 6(x) = .

Remark. The endpoints a and b are idempotent elements, because the
neutral element and annihilator are idempotent.

Definition 6. Let {(Aq, Ra)}ack be a family of semigroups indexed by a set
K CR. For all o, 8,7 in K let these semigroups satisfy the following compati-
bility conditions

(i) fa<B<~vyand Ag M Ay # W, then Ag = Au N A,
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(i) If « < B and x € Ay N Ag, then z is the unique element from Ay, N Ag
which is the neutral of Ry and the annihilator of Rg.

If A=UygA, and R: A x A — A is a binary operation defined by: For v € A,
and y € Ag,

T, o< 3
R(I,y) = Ra(fvay)e = ﬁ )
Y, >

then the semigroup (A, R) is called t—ordinal sum of the family of semigroups
{(Aa: Ra)}

Note that the compatibility conditions guarantee that the binary operation
It is well defined on A.
Analogously, we give the following definition.

Definition 7. Let {{ A, Ra)} be a family of semigroups indexed by the set K C
R. For each a, B, from K these semigroups satisfy the following compatibility
conditions.

(i) fa<B<vand Ay NA, # 0, then Ag = A, N A,.

() If a < B and x € Aa N Ag, then x is the unique element from Ay N Ag
which 1s the annihilator of R, and the neutral element of Rj.

IfA=U,A, and R: Ax A — A is a binary operation defined by: For v € A,
and y € Ag,

v, a<pf
R(z,y) = Ralv,y), a=p ,
x, a>p

then the semigroup (A, R) is called s—ordinal sum of the family of semigroups

{(4s, Ra)}-

Definition 8. We say that the operation R : [a,b]? — [a,b] satisfies the con-
dition of the diagonal if from 6(x) = v follows that v, and h, are continuous
functions.

Let [a,b] be a closed finite interval of R. We denote by T1{a.b] the class of
all associative binary operations R on [a, b}, nondecreasing in each coordinate,
whose neutral element is the endpoint b and which satisfies the condition of the
diagonal and the condition v) from Theorem 2. We denote by Sla, b] the class of
all associative binary operations R on [a,b], nondecreasing in each coordinate,
whose neutral element is the endpoint a, and which satisfies the condition of
the diagonal and the condition v) from Theorem 1.

We introduce an important property of a binary operation
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Definition 9. Let R be an associative binary operation on the closed interval
[a, b], nondecreasing in each coordinate and whose neutral element is b. Then R
is an Archimedean if

(Vz,y € (a,b))(Fm € N) 2™ < y.
Definition 10. Let R be an associative binary operation on the closed interval

[a,b], nondecreasing in each coordinate and whose neutral element is a. Then
R s an Archimedean «f

(Vz,y € (a,'b))(ﬂm € N) 2™ >y,
We have by [14].
Theorem 3. Let R be a binary operation on the interval [a,b].

i) For R € Tla,b|, the necessary and sufficient condition for R to be Archimedean
is that the following holds

(Vz € (a,b)) 6(x) < x.

#t) For R € S|a,b], the necessary and sufficient condition for R to be Archimedean
is that the following holds

(Vz € (a,b)) 6(x) > x.
We have by [14] the following characterization.

Theorem 4. Let R € T{a,b]. Then we have
(i) If §(z) <  for all x € (a,b), then R is an Archimedean on |a,b] and
conversely.
(it) If §(z) = & for all x € [a,b], then R is the restriction of min to [a,b] and
conversely.
(#1) Otherwise, the semigroup ([a, b, R) is a t-ordinal sum of semigroups ((An.Tx))
where each A, is a closed subinterval of [a,b], each T, belongs to T|A.]
and T, is either Archimedean on A, or the restriction of min fto A.

Analogously, we have
Theorem 5. Let R € S(a,b]. Then we have
(i) If 8(x) > = for all x € (a,b), then S is an Archimedean on [a,b] and
conversely.
(i1) If 6(z) = z for all = € [a,b], then S is the restriction of max to [a,b] and
conversely.

(1ii) Otherwise, the semigroup ([a,b],R) is an s-ordinal sum of semigroups
((Aq,Sa)) where each A, is a closed subinterval of [a,b], each S, be-
longs to S|Aa), and Sy is either Archimedean on A. or the restriction of

max to A,.
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3. Pseudo-operations on finite intervals

Definition 11. We call the binary operation * : [a,b] X [a,b] — [a,b] o pseudo-
operation, if it is an associative and commutative operation which has a neutral
element e and it is nondecreasing in each coordinate.

We introduce special kinds of pseudo-operations.

Definition 12. The pseudo-operation on the interval [a,b] is a generalized t-
norm on the interval [a,b] if b is its neutral element.

The pseudo-operation on the interval [a,b] is a generalized t-conorm on the
interval [a,b] if a is its neutral element.

Remark. The preceding notions in the case [a,b] = [0,1] coincide with the
usual notions of t-norms and f-conorms, respectively.
It is interesting to consider the case when e € (a, b).

Theorem 6. Let x be an arbitrary pseudo-operation on a finite interval [a, b
with a neutral element e € (a,b). Then by *1 = *|4. @ generalized t-norm on
the interval [a, €] s defined, and by x5 = *||. 4}, a generalized t-conorm on the
interval [e, b] is defined.

Proof. Let x,y € [a,¢]. The operation *r is a restriction of *, therefore, a <
x*7y and the monotonicity of » implies 2,y < e = x*7y = xzxy < exe = e, as
well, 1.e. *r is the closed operation. The closeness of the operation xg is proved
similarly.

The associativity, commutativity, and monotonicity are invariant with re-
spect to the operation; they are also valid as universal properties for restriction
of this operation. Clearly, e is a neutral element for *r and *g. 0

Analogously as in the paper [3], we can prove the following lemmnas.

Lemia 1. If * is the pseudo-operation on the interval [a,b] and min(x,y) <
e < max(zx,y), then

min(z,y) < @ *xy < max(x,y), .y € [a,b]

Proof. We suppose © < ¢ < y. Then z+xy < exy = y = max(x,y) and
Txy > 2 *e =z =min(z,y). O

Lemma 2. For each pseudo-operation * on the interval [a,b], the element a b
s its annihilator, t.e.,

(Vz € [a,b]) axb=(axb)*z.

Proof. Let x € {e,b]. Then Theorem 2 implies that b is an annilillator for g,
ie., b=>b*gx = bxx. Hence

axb=ax*(bxx)=(ax*xb)*xzn
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If # € [a,e], then we have by Theorem 1 that a is an annihilator for *r, i.e.
a = x *7 a = x * a. Therefore,

axb=(z*a)xb=zx(axb)=(axb)*z.

Corollary 1. If * is a pseudo-operation on the interval [a,b], then
ax*b€ {a,b}.

Proof. Since the neutral element is never an annihilator, we have a x b # e. If
axb € (e,b], then by Lemma 2 we have a *b = (a x b) * b = b, while b is the
annihilator for * in interval [e, b].

Similarly, for a x b € [a,e) it follows a b = (@ % b) xa = a. O

Let * be a partially continuous pseudo-operation, i.e., « * b is a continuous
function on [a,€), and if a * b = a holds, then pseudo-operation is called pseudo-
operation of the first kind. If z x a is a continuous function on (e, b], and if
a * b = b holds, then * is called the pseudo-operation of the second kind.

Theorem 7.

i) If * is the pseudo-operation of the first kind, then

(Vz e la,e))z+b=1u.

1) If * is the pseudo-operation of the second kind, then

Vre(eb) xxa==x.

Proof. i) By the continuity of the function s(z) = « * b and using that s(a) =
a*b=aand s(e) = exb=1b, it follows that for each 2 € (a,e) C [a,b] there
exists z € (a,e) so that z = s(z) = z * b. Now we have

zxb=(2*xb)xb=z%(bxb)=2xb=r=.

ii) Similarly, for all & € (e, b) C |a, b] there exists z € (e, b) such that x = zxa

and
zxa=(zxa)xa=z2%(a*a)=z*a=2.

0

Let * be a pseudo-operation of the first kind. If x < e < y then by Theorem

7, x¥b = x. Now by Lemma 1 it follows x < z*y < y. Hence x < zxy < axb = x,

ie., xy = z. Similarly for y < e < z it follows z * y = y, so we have

min(z,y) € e < max(z,y) and so

z # y = min(z, y).
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Let * be a pseudo-operation of the second kind. Analogously, if min(z,y) < e <
max(z,y) we have
T * y = max(z,y).

Hence using Theorem 6, the following theorem on the representation of pseudo-
operations on a finite interval follows.

Theorem 8. Let « : [a,b]? — [a,b] be the pseudo-operation with o neutral ele-
ment e € (a, b).

i) If * is the pseudo-operation of the first kind, then

rxT Y, $7y€[aae]
T*Yy =4 T*g¥, z,y € e, b
min(z,y), min(z,y) < e < max(z,y)

1) If * is the pseudo-operation of the second kind, then

T 4T Y, z,y € la, €]
rT*xYy = :L'*S‘ya w,ye[e,b]
max(z,y), min(z,y) < e < max(z,y)

4. Semirings on finite intervals

Let @ and % be two pseudo-operations defined on the finite interval [a, b]
{a < b). Let us denote their neutral elements with 0 and 1, respectively.

Definition 13. Let ® be a pseudo-operation which is distributive with respect
to the pseudo-operation () and 0 is annihilator for the operation =, then we
say that the operations () and & are pseudo-addition and pseudo-multiplication,
respectively, and the structure ([a,b], (), %) is called a semiring.

The equality 0 = 1 is impossible, because z = 2 %1 = x ® 0 = 0, for all
z € [a, b], therefore 0 # 1.

Theorem 9. Let ([a,b], D, &) be a semiring. Then either () is a generalized
t-conorm and ® a generalized t-norm or () is a generalized t-norm and % a
generalized t-conorm.

Proof. Suppose that 1 € (a,b). If 0 € [a,1), by Theorem 1 we have that a is
an annihilator for the restriction of the operation ® on the interval [a,1], so
a = 0, since the annihilator is uniquely determined. Similarly, from Theorem 2
we have that b is an annihilator, for the restriction of the operation « on the
interval [1,b], then it follows that b = 0. Contradiction, because a # b.
Therefore, 1 € {a,b}. If 1 = b, by Theorem 1, it follows 0 = a, ie., i is
a generalized ¢-conorm and & a generalized t-norm. Similaily, if 1 = a, then
0 = b, i.e., (I is a generalized t-norm and ® a generalized t-conorm. O
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Theorem 10. If () € {max,min}, and ® is an arbitrary pseudo-operation on
the interval [a, b], then the distributive law (R with respect to () is valid.

Proof. Suppose © < y. Hence z ® z < y ® z. If () = max, then we have

(x DY) ®z=max(z,y) ¥z =y %z =max(zxz,y % z) = (x0z) O (yxz).
We have similarly for () = min that

(zdhy)Rz= mm(a:,y) Wz=z&z=min(z® 2,y % z) = (T z2)D(ywz).

O

Let [a,b] be a finite interval. For the semiring ([a, b], (D, ®) we say that it

is partially continuous, if () satisfies the condition of the diagonal and either

the condition v) from Theorem 2 or the condition v} from Theorem 1. Then
® € Tla,b] US]a,b).

We have now the main result.

Theorem 11. If [a,b] is a finite interval, then ([a,b], ), ®) is a partially con-
tinuous semiring if and only if either () = max and ® is a generalized t—norm
or @ = min and & is a generalized t—conorm.

Proof. The endpoints a and b are idempotent elements with respect to (), and
Theorem 9 implies that 1 (» 1 = 1. Hence, if we choose that z = y = 1, for
z € [a, b] we have

(zhyyRz=(@x2)D(y®z) Sz=2z(z,

i.e., all elements of the interval [a, b] are idempotent with respect to (). There-
fore, it follows from Theorems 5(ii) and 4(ii) that either () = max or ¢) = min.
If » = max then 0 = a, 1 = b, i.e., ¥ is a generalized ¢t—norm. If () = min then
0=0b,1=aq,ie ®isa generahzed t—conorm.

Conversely, by Theorem 10 the distributivity of the opera.tlon o0 with respect
to the operation ¢ € {max,min} follows. It is obvious that max € Sfa.b],
min € T{a,b]. Let us prove that 0 z = 0, = € [a,b]. Let (0 = max and &
be a generalized t—norm. Then, 0 = a and 1 = b, and by Theorem 1 i) we
obtain that a is an annihilator for ¢, i.e. 0 ® x = 0. The proof is similar when
@ = min and ® is a generalized t—conorm. Therefore, ({a, b], (", %) is a partially
continuous semiring,. o
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