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INFLATIONS OF THE AG-GROUPOIDS !

Nebojsa Stevanovié?, Petar P. Protié?

Abstract. Inflations of semigroups are considered by Clifford [4] and
Petrich [7}). The notion of n-inflation was inrtoduced by S.Bogdanovié and
S.Mili¢ in [3] In this paper we made the construction for the n-inflation
of the AG-groupoid, and gave some of its properties.
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1. Introduction

Before we consider the construction for the n-inflation we shall give the
definition of an AG-groupoid. After that we shall introduce some notions such
as retract extension, inflation, strong inflation, etc.

The groupoid S on which the following is true

(1) (Va,b,c € S) (ab)c = (cb)a,

is an AG-groupoid (Abel-Grassmann’s groupoid), [5]. On an AG-groupoid holds
medial law

(2) (ab)(cd) = (ac)(bd)

for every a,b,c,d € S. An AG-groupoid B whose all elements are idempotents
we shall call an AG-band.

A subset I of S is a left (right, two sided) ideal of S if ST C I (IS C I,
SIS C ).

Definition 1.1 Let S and T be two disjoint groupoids, and suppose that T has
a zero element. AG-groupoid V is said to be an (ideal) extension of S by T
if it contains S as an ideal and the Rees factor V | S is isomorphic to T. If,
in addition, there is partial homomorphism ¢ : T — 0 — S such that for all
A, BeT - {0} ande,d€ S:

AB, for AB#0 inT

AoB = { o(A)p(B), for AB=0 inT,

Aoc=yp(A)c, co A =cp(A), cod = cd, then we say that the estension V is
determined by the partial homomorphism.
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Definition 1.2 Let V be an extension of S. We say that V is a retract exten-
sion if there ezists the homomorphism ¢ of V onto S such that ¢(2) = . for
all x € §. In this case we call ¢ a retraction.

M. Petrich in [7] proved that an extension V of a semigroup S by semigroup
T with zero is determined by a partial homomorphism iff it is a retract. S.
Bogdanovié and S. Mili¢ [3] gave one more characterization for retract extension
of semigroups; we shall carry it out for AG-groupoids. Authors of this paper
made such a constructions for the AG*-groupoids in paper [8].

Clifford in [4] have defined a notion of an inflation of a semigroup, and
we shall extend it to an inflation of an arbitrary groupoid. A groupoid G is
an inflation of a groupoid T if T is a subgroupoid of G and there exists the
mapping ¢ : G — T for which ¢(a) = a,a € T and zy = o(2)¢(y), 2,y € G.

We can also give a notion of a strong inflation of a groupoid which is based
on the definition of M. Petrich [7] for a strong inflation of semigroups. Let T be
a groupoid. To any a € T we associate the sets X, and Y, with the following .
properties:

@€ X, XoNXp=Y,NYy=0, fora£b, X,NYy=0foralabeT

For z € Y,, y € Y, let the element <p(“'b)(a:,y) € Xu. Let Z, = X, UY,,
G = U,er Za and define an operation * on G in the following way:

pay={ €@y, ceYuyeY
ab, in other case

where x € Z,,y € Z,. The groupoid G is a strong inflation of the groupoid T'.

Definition 1.3 Let G be an arbitrrary groupoid, for n € Z+ we can define the
set G™ in the following way:

GV =G; G? =G*={zy:z,y € G}; GV =GGM U GG forn > 2

In other words, G™ contains all products of a length n with all possible
combinations of brackets, and we can call it general power of G. It is ob-
vious that for all n € Z*, G™ is an ideal in G. Forif z € G, a € G,
we can suppose without loss of generality that a = ((122)z3)...)w,,), then
za = z(((z122)23) .. .)2n)) € G and ax = (((2172)x3) . . .)Tn))z € G, since
z1x9 € G. We also have that G+ C G™ for all n € Z+.

It is easy to show that if a groupoid G is a strong inflation of a groupoid T
then G is a retract extension of T and G® C T.

Definition 1.4 Groupoid G is an n-nilpotent if G = 0 for some n € Z+.

If T = 0 and G is a strong inflation of T then G is an n-nilpotent, and degree
of nilpotency is n < 3.

Although we defined inflations on an arbitrary groupoid, in this paper we
shall discuss only inflations of the AG-groupoids.
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2. n-inflation of the AG-groupoids

In this paragraph we shall modify the construction of the n-inflation of
semigroup made by S. Bogdanovi¢ and S. Mili¢ to an n-inflation of the AG-
groupoid.Let us remark that for n = 1 we obtain Clifford’s inflation and for
n = 2 we obtain Petrich’s (strong) inflation.

Lemma 1 Let T be an AG-groupoid, to any a € T we associate a family of sets
X2, i=1,2,...,n such that a € 22 for somer €1,2,...,n and

(3) XfNXE=0 for i#j XiNX:=0 for a+#b.

For the nonempty sets X and X;? let

$og XXX = UL XS of i<
(4) ﬁﬁﬂmw—abft+3>n

b ab
¢(:IJ))( v)= ¢E”))(x b) = ab
be the mappings for which it holds:
() (Vs 2i+5)(vt2k+35) dans (B (@,v).2) = d{y (B2 (2,0, 2)

foralla,bjceT wherei+j<norj+k<nors+k<nort+i<n. Let
Y, = UL X2, on S = UgerY,, define operation * with:

Txy :d)&i’;))(x y),z€XHyeX1<4ij<n

Then (S, x) is an AG-groupoid.

Proof. Letz € Y,,ye Yy, z€ Y, ie "cGXf,yGX]’?,zeXﬁ,1_<_i,j,k§n.
Let i+ 7 <n, j+ k <n. Then we have:

(cxy)xz= ggﬂxw:z—#ﬂ?tf?@wxa
= ¢(t,z')a)(¢§z g))(z y) ) d)(k'])(l,y) ¥

= (zxy)*zx

In other cases we can prove in a similar way that (z x y) *x z = (2 % y) * 2, so
(S,#) is an AG-groupoid. a

Definition 2.1 An AG-groupoid S constructed in Lemma 2.1. is called an n-
inflation of the AG-groupoid T'.

Theorem 1. An AG-groupoid S is an n-inflation of the groupoid T iff SV <
T and S is a retract extension of T.
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Proof Let S be an n-inflation of a semigroup T. By (5) T is an ideal of S. Let
u € S™+YD. Without loss of generality we can suppose that u = (... (s; * sg) *
s3)*...)*sppyand s, € T,r =1,2,...,n+ 1. Let s, € X{",a, € T, then:

u=/{(...(s1 %82) % 33) * .. )% Suq1 = (... ((/)é‘l",'l’;”)(sl,sz) *83)...) % Spil
If 2 > n then 631" (s1,52) = w1 € T, so u € T. If 2 < then:

u = ( (“l * 33) * . ) *Sn41 = ( (ff’g,m’m)(ul, 83)) * *4) NE: Sn+1.

where u; € X7''*,2<t; <n. Ift; +1> n then d)gf'l',';i’““)(ul, s3)=up €T,
soueT. Ift; +1 < n then:

u= (. (ua*sa)*85)...) % snp1, Uz € X 3<y <.
By continuing this procedure we obtain that if ¢,,_s + 1 > n, then:

(/)(t,, (:",llf;z)a:s)..-)au.—l,an)(un_z, sn) =y, €T,

sou€ T and if t,_2+ 1 < n then:

N S A (MRTEEY R o

sincen—1<t, s<nandt, o2+1=n

Other cases can be proved simillarly, so S@+1) < T. Let us define the
mapping ¢ : S = UgerYa — T by ¢(z) = a for all x € Y,. Let x:,y € S, then
there exist the elements a,b € T suchthat t € Y,, y € Ypie. v € XI , Y E X;’,

for some 1 < 7,7 < n. Since (/>(i ' (n:, y) € X2 C Yoy, i+J <k <n we have:

pla +y) = B(o(e) () = ab = d(2)e(y),

so ¢ is a homoinorphism. It is clear that ¢(a) = a for all a € T so ¢ is a
retraction and S is a retract extension of 7.

Conversely let n be the smallest positive integer such that S"*!) ¢ T and
let ¢ : S — T be aretraction from S to 7. An arbitrary element a € T must be
in one of the sets § — §®, §@) 8@ g1 _gm)  §(n) for example
a €S- _gr—r+l) <y < n—1. Let us define the sets Y, = ¢ (a) and

X¢= Y,n(S-S@)
X$= YoN (5(2) - 5G3)

;-l;—r L= Ya N (S(n—r——l) _ S(n—r))
X;:_,. = Y,n§"-"

a — — Ya
n—r+l Xn—r+2 e Xn - m
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Fora € T, we have that Y, = U, X and § = UserY,. For 2,y € S there exist
the elements a,b € T such that x € Y, v € Y;. By Proposition 1.1 Y, Y, C Y.

Let z € X¢, y € X2, a € SO —Sr=rtl)  pe §Or=p) . gln-p+l) - ¢ <
r,p <n—1, then

z€XE=Y,N(sW -8 ye Xt =y, n(sW) - Uty

where 1 <i <n-r, 1<j<n-—p Byabove we have that ay € s608U) ¢
SG+d) if i+ j < n then zy € U™_,, . X% and if i +j > n then 2y = ab € T.

v=i+j _
For x € X, b € T zb = ab and bxr = ba. In this way the mappings (/)éjjb)) are
defined and the condition (6) holds. O

If we put in Lemma 2.1 that the mappings d)éz’;.’)) X8 x XJ'-’ — X where
i+ 7 < r < n, then we obtain a strong inflation.

‘We can replace the condition (6) in Lemma 2.1. with some other one and ob-
tain an n-inflation of other class of groupoids. If we make construction without
the condition (6), then we obtain an n-inflation of groupoid in general. However,
in this paper we shall deal only with n-inflations of the AG-grupoids.

Example 2.1 The AG-groupoid S = {1,2,3,4,5,6,} whose multiplication is
given with the following table is a 3-inflation of an AG-groupoid T = {1, 2. 3}.

1 2 3 4 5 6
112 3 1 2 2 3
211 2 3 1 1 2
313 1 2 3 3 1
412 3 1 2 6 3
512 3 1 6 2 3
611 2 3 11 2

Table 1.

The sets Xf are:
Xi={1}, X3={4}, X3={5}
Xt=10, Xi={2}, X3=({6}
X;=9, X3= ¢, X3={3}

It is obvious that S ¢ 7 and that there exist retraction from S to 7. This
inflation is also a strong inflation.

3. n-inflations of the orthogonal sum of AG-groupoids

In [7] M. Petrich proved that inflation (1-inflation) of semigroups is compat-
ible with an orthogonal sum. In Theorem 3.1. we shall prove this for inflation of
the AG-groupoids (groupoids in general) and give necessary and sufficient con-
ditions for the n-inflation to be compatible with an orthogonal sum (Theorem
3.2).
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Let S be an AG-groupoid, 0 element not belonging to S, define 20 = 0x =
00 = 0 for all z € S, then S U {0} is an AG-groupoid with zero. With S° we
shall denote S if it has a zero element and S U {0} if S does not have a zero
element. By S* we shall denote the set S — 0.

Definition 3.1 We say that an AG-groupoid with the zero S is an orthogonal
sum of AG-groupoids {Sa,x € Y} and denote S = Zpey Sa, if § = Uney Sa,
S.N8Sg=0and S5 =0 foralle,f€Y, a# 3.

Proposition 3.1 The AG-groupoid S° is an inflation of the orthogonal sum
of the AG-groupoids To,ax € Y iff S = EneySa where S, are inflations of
Ta, €Y.

Proof. Let S° be an inflation of T = SpeyTh, and ¢ : S© — T a retraction
associated with it. We shall fix e Y, foraeY, a#glet

Sa={z€S:p(x) €TIIUO0, @o=¢]5a

and

Sp={zecS:p(x)eTpt, vp=¢]Sp
If z,y € Sp, then p(zy) = o(x)p(y) € Tgso xy € Sg. If z,y € S}, o # B,
then (x), o(y) € T. If p(zy) = 0 then zy = 0 (since all € S such that u # 0
and ¢(u) = 0 belong to Sg) so zy € S,. If p(zy) # 0 then p(zy) = @(2)p(y) €
T so zy € S,.

Let z € So, y € S, and zy # 0, we have zy = ¢(zy) = p(a)p(y) # 0,
since $2 C T and ¢(zx) € T, ¢(y) € Ty it will be a = . Consequently, S =
Yaey Sa, and obviously S, is an inflation of T,, with the retractions ¢, a € Y.

Conversely, let S, be inflations of T,, and ¢, : S, — T, associated retrac-
tions, we can define the mapping ¢ : § = Yaey Sa — T = YaeyTa with

| valz), for =€ S
Lp(l).~ { 0, for =0,

It is obvious that S is an inflation of T |
However for an n-inflation of AG-groupoid with zero we have to introduce
some restrictions to make it compatible with the orthogonal sum.

Theorem 2 The AG-groupoid S is an orthogonal sum of the AG-groupoids S,
which are n-inflations of the AG-groupoids T,,, o« € Y iff S is an n-inflation of
T="S0eyTa and X§ =0, 1 <i<n.

In other words, we should not blow zero element from 5.
Proof. Suppose that S is an n-inflation of T, ¢ : § — T associate retraction.
Similarly as in proof of Proposition 3.1 we make the sets

Se={zeS:p(x)eTi} U0
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and the mappings
Yo =¢|s,, a €Y.

Ifz,y € S} then p(xy) = p{x)p(y) € To sozy € Sx. fx € S,, y € Ss and
zy # 0 then p(z)p(y) = p(zy) # 0, since p(z) € T,, ¢(y) € Tz it follows that
a = f3. Therefore, S is an orthogonal sum of {S,, a € Y'}.

Let y € S&Y € S(+1) gince S is an n-inflation of T it holds S(+1) CT,
so u € T whence ¢(u) = u. Furthermore, since u € S, we have p(u) € T,
whence u = @(u) € T;. From the above it follows S,g"+1) C T, and since @,
are retractions from S, to T, by Theorem 2.1 S, is an n-inflation of 7,.

Conversely, if S, are n-inflations of T,, ¢, : So —> T, associate retractions
and T = X,cyT,, it is easy to prove that ¢ : S — T defined as in the proof
of Proposition 3.1 is a retraction. Obviously, S+ C T, 50 § = Tacy Sy is an
n-inflation of T. o

N4

L]

Figure 1. Figure 2.

4. Inflations of the AG-bands

Now we shall characterize inflations of the AG-bands and semilattices.

Theorem 3 On an AG-groupoid S the following conditions are equivalent:
(1) S is an inflation of an AG-band,

(¢1) S@ is an AG-band,

(i3i) S is an AG-band Y of zero semigroups S,, a €Y, and Y = E(S) = S
(iv) (Vz,y € S) zy = 2%y* = (zy)*.

Proof. (i) = (ii) Let S be an inflation of the AG-band T. Then S C T, T is
an ideal in S and there exists a retraction ¢ from S onto T'. Clearly S®) =T

(1) = (i) Suppose that S‘® is an AG-band. The mapping ¢ defined by
o(z) = x? is a homomorphism from S to S because p(zy) = (zy)*> =
(zy)(zy) = (zz)(yy) = z%y® = p(z)p(y). Since S? is an AG-band it fol-
lows that ¢(z) = 22 = z so ¢ is a retraction and by Theorem 2.1 S is an
inflation of S(2),

(i) = (#41) Since ¢ is a homomorphism from S to S, ker(y) is a congru-
ence on S. From p(x) = 2? = 2?22 = (22)? = p(a?) it follows that zker(p)z>
for all z € S, so ker(yp) is a band congruence and S |(xer(,)) is an AG-band Y.

For z,y € S,, a € Y it holds zy = ¢(zy) = ¢(x)p(y) = €neq = €4 and
Tes = plzeq) = p(z)p(ea) = €. Similarly, e, = e,, 50 Sy is a zero semigroup
with zero e,.
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(1) = (1) Follows immediately.
(iv) = (%) Suppose that for all 2,y € S it holds xy = 22y then

2y = 2?2 = (x2)(yy) = (vy)(ay) = (wp)?,

so zy is an idempotent and $? is an AG-band.
(1) = (7v) Let S? be an AG-band, then for all z,y € S it holds

= (zy)® = (zy)(zy) = (27)(yy) = z°%. O
Example. Let the AG-groupoid S be given by the following table.

1 2 3 4 35 6
111 4 2 3 1 4
213 2 41 3 2
3141 3 2 41
412 3 1 4 2 3
511 4 2 3 1 4
63 2 4 1 3 2

Table 2.

This groupoid is an inflation of the AG-band T = {1, 2, 3,4} by sets X! = {1, 5};
X2 = {2,6}; X3 = {3}; X* = {4}. We also have that S is an AG-band T of
the zero semigroups So, @ € T, where S, = X®. Condition (i) from above
Theorem holds too.
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