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ON BINARY n-WORDS WITH FORBIDDEN
4-SUBWORDS

Doroslovacki Rade!

Abstract. The set of all words of length n over alphabet {0,1} with a
fixed forbidden subword of length 4 is enumerated and constructed. The
number of words is counted in two different ways, which gives some new
combinatorial identities.
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1. Definitions and notations

Let X = {0,1} be the 2-letter alphabet and 0 and 1 are its letter.

If x, € X", ie. if x4 = (z1,72,...,%,) is an ordered n-tuple with compo-
" nents from X, we say that x,, is a word of length n over the alphabet X. For
the sake of brevity, we shall write (z1,32,...,7,) as 2122, .. Ty.

If S is a set, then |S| is the cardinality of S. By {z] and |z| we denote the
smallest integer > z and the greatest integer < x, respectively. By {,(p) we
denote the number of subwords ¢ in the word p € X*, where X* is the set of
all finite strings over the alphabet X i.e.

X* = U Xk,
k>0

In the special case, by €o(p) and £;(p) we denote the number of zeros and ones,
respectively in the string p € X*. The set N is the set of natural numbess.
N, ={1,2,...,n}, N, = # iff n <0, the binomial coefficient (}) =0iff n < k
and

2] ={ lxz] for ||z|] — x| <05
[z] for |[z] — 2] <05

i.e. [x] is the nearest integer to x.
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2. Results and discussion

There are 16 cases for a forbidden subword over the alphabet {0.1} of the
length 4 and the set of all those forbidden subwords we denote by

S = {xywamgry|x), w0, x5, 24 € X}
Now we define relation p in the set S in the following way:
ai1agazay p bibobsby <— S; =52 where
S1 = {Xn[Xn =21, 22.. 2y € X7 A (VI € Np_2) (035412442 # ar100a3a4)} and

So = {Xn|Xn =21, 22. .. 2 € X" A (Vi € Np_o){(msaip1®iy2 # 51b2b3by) ).

We shall prove that p is an equivalence relation and that there are only four
equivalence classes:

Sa = {0000,1111}, Sg = {1001,0110,1101,1011,0010,0100},
S¢ = {1000, 0001, 1110,0111,0011,1100} and Sp = {1010,0101}.

Theorem 1. If n is a natural number, then

2_.1 . .
iz n—iz+ 1\ [iz—i2\ (2 —i1) 2a3+2a2+2a+1an
= =6 i3 — i 19 — I i1 - a3+ 202 + 3+ 4

where o = 1,927561975482925303 is a real root of 2* — a3 — 2% — 2 —1 = 0.

'lE

'|'| M ~k

Proof. In the paper [3] we have

NI iy i1\ fia— i) (i —i
an = |A(n)| = ( . _31,‘ ) (1.3 ‘1_2) (21' 1) where

im0 ig=0 4,20 \ 3 2 27 1

An) = {Xn|xn = 21,22...2n € X" A (Vi € Np—3) (@itip1Tiporips # 1111)}
Words x, € A(n) are obtained from other words x,-1 € A(n — 1) by ap-

pending 0 or 1 in front of them. Let x,—3 € A(n — 1), x4_2 € A(n — 2)
Xn_3 € A(n —3) and x,,_4 € A(n —4). Then 0x,_1 € A(n) and 1xn_y € A(n)
if and only if x,_1 not begins with the letters 111. Since 10x,,_2 € A(n),
110x,-3 € A(n), 1110xy,_4 € A(n) this implies the recurrence relation

Qp =0p—-1+0n-2+Cy-3+0n—yg

whose characteristic equation is #* — 2% — 2?2 — 2 — 1 = 0 and whose roots are
o ~ 1.927561975482025, B ~ —0.77480411321543, v + 6, ~— 6. The
explicit formula for a,, is

a, = Cra™ + C28™ + Ca{y +16)™ + Caly — i6)™.
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Since ag=1, a1 =2 @ =4, a3 =8, 6] <1, =it = VF 15

-;—5 < 1, limy 00" = 0 and lim, ,oo(y £+ 46)" = 0, the proof is

completed. 0

Corollary 1.

(3] L3 <l n—ds+ LYz —daYia — 1
limZu:o Lm0 220 ig—i2 Ni2—ii\ 41 ) 2a°+2a%+2a+1

n—oco am —a3+2a2+3a+4

Theorem 2.

nnzl,n__J

sei=1-350 S () (L))

=1 j=0 k=0

2a° + 1

and b(n) = |B(n)| = [ T 40/1} where

o= —;— (1 +v3+ 2\/5) ~ 1,86676039917386 is a root of a* —223+2—-1=0

and B(n) = {xn | xn = z122...2 € X7, (Vi € Np_3)(xi®iq 1240043 # 0110) ).

The proof is given in [6]. The subwords from the set Sg are equivalent
because we have the same recurrence relations for all forbidden subwords from
the set Spg.

Corollary 2.

— m 1 — i—1—9\ (n—i—j—~2k
Him Die1 n~(; 1&:03 : (ljl)( ) kj+12k+1) 20841
n—co an 203 —3a+4

Definition 1. A subword (word) y1y2...yx ¢s good iff
Y1Y2---Ys F Yk—s+1Yk—st+2--- Yk for each natural number s < k.

AN

It is obvious that all subwords (words) from S¢ are good subwords and
because of that [4] they are equivalent.

Theorem 3.

1

|G(n)1—2< (" 31)271—4i=[(1+%gm)an_§]

where C(n) = {Xn|Xn = 2172.. .3, € X A (Vi € Ny _3)2i2i 1 2442543 # P}, P
is a good subword of word x,, from set S¢ and

1 3 3
==1 9+ 3v V19 —3v33 ) = 1.83928675521416
3( +\/1 +3v33+y19-3 3) 6755
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Proof. Tt is obvious that all words from S¢ are equivalent. Because of that,
we can use the subword 1000 for counting the words in C(n). The left side of
the identity follows from [4]. Words x, € C(n) are obtained from other words
Xn-1 € C(n — 1) by appending 0 or 1 in front of them. Let xn—1 € C(n — 1),
and xp_4 € C(n —4). Then Oxy—y € C(n) and 1x,_y € C(n) if and ouly if
Xp—1 hot begins with the letters 000. Since 000x,,_4 € C(n — 1) this implies the
recurrence relation
Cn = 2Cp—1 ~ Cpn—4

whose characteristic equation is #% — 223 + 1 = 0 and whose roots are 1, a &~
1.83928675521416, 3+ iy and B — iy . The explicit formula for ¢, is

cn =C1+ Coa™ + C3(B +iv)" + Ca(B — i)™

Sincecg=1,¢; =2, c3 =4,c4 =8, |Bxiy| = VB2+42 = \/g < 1 and
limy, 0o (B £ i)™ = 0, the proof is completed. |

Corollary 3.
L% ) . .
Z (_1)1(11;31) 2:1-—41, 3
lim =2 =14+ —
n—o0 Coan 202 + 2a — 2
Theorem 4.
el :
dp, = |D(n)| =n+1+ » > i1(ig +1) (3 +1) ... (i + 1) ipga

k=1 i|+i2+...+‘il_.+l=1l-—2k+2
where 1,12, ...,tk41 € N and

D(n) = {xnixn =x1Zy...T, € X" A (Vi (S N,1_3)$Bil'i+1l'i+2:l?i+3 75 1010}

Proof.

Let us count the number of all strings of the length n over the alphabet X
with the forbidden substring 1010 i.e. the number of strings in the set D(n).
We partition the set D(n) into the subsets D*(n), where D*(n) is the set of all
those words of length n over alphabet X which contain exactly k& substrings 10
(xn € D*¥(n) = l10(xn) = k) and do not contain the subword 1010, i.e.

D*(n) = {Xn|Xn = 122 ... 2, € D(n), lio(xn) = k}.

Let us construct the words from the set D*(n). First we write & substrings
10. Then we write nonempty substrings, which are letters from the alphabet
X, on the k — 1 places between k substrings 10 and we write substrings from
the same alphabet on the places in front and behind the string, that is into
k + 1 regions in all, and the number of letters in these regions, from left to
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right, are m;, my,..., mgyy respectively. It is clear that m;,mg € N U {0}
and mgo,m3,...,mg € N. These substrings must satisfy the property that the
substring 10 is forbidden in them. Now we have that

L5

my+mo+ma+ ... +my +my; =n—2k and |D(n)| = Z | D*(n)).
k=1

From Theorem 1 we have that the number of substrings in the regions with 1.,
letters is m; + 1, because these substrings are with the forbidden substring 10.
It follows that

d, =|D(n)| = Z }: (my + 1)(7ng+ 1)...(mgy1 + 1)

k=0 mi+mat...+my=n—2k

where my,my € NU {0} and mg,m3,...,my € N.
If we substitute my = i3 — 1,mg = i3,...,m = i and mygq; = igpg — 1, then
follows Theorem 4. a
Theorem 5.
203 + 2a — 1
203 — 202 + 60 — 4

oo LEV2H V221
B 2

n where

= 1D = |

~ 1.8832035059135.

Proof. 1t is obvious that the subwords 1010 and 0101 are equivalent and because
of that we can use the subword 1010 in this counting. We call a word x,, good
Ciff x, € D(n). Words x,, € D(n) are obtained from words x,-1 € D{n — 1)
by adding 0 or 1 in front of them, except that some not good words are also
produced, namely those which begin in 1010, i.e. Oxy—y € D(n) and 1x,_; €
D(n) iff x,,-1 does not begin with string 010. First we subtract the number of
all good words of the length n — 1 which begin with the letter 0 (i.e. d,,—2) from
2d,,_1, and after that we add the number of all good words of length n —2 which
begin with either 11 or 01 or 00. The number of these words can be obtaiue
by adding 0 or 1 in front of the words x,—3 (i.e. 2d,.3) and subtract all good
words of the legth n — 3 which begin with 0. So

dn =2dn_1 — dn—2 +2d,_3 — dn—4

whose characteristic equation is £ — 223 + 22 — 222 + 1 = 0 and whose roots are

a_1+\/§+\/2\/§—1 C14+v2-v2V2 -1
B 2 ’ - 2

B
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1—vV2+ivV/2vV2+1 O 1-V2-iV2vV2 41
= 5 and & = > .

The explicit formula for d,, is
d, = Ch1a™ + Coff" + 2R.(C37™)
(2a3 + 2a — 1)a™ (28° + 28— 1)p"

(27 + 27— 1)y

d, = 2R,
"7 203 — 202 + 6 — 4 2ﬂ3—2ﬂ2+6ﬂ—4+ R'2’y3~2'y'3+6;v—4
where
203 + 200 — 1 283 +28 -1
C1: ; ) C2: y
208 — 202 + 6a — 4 233 —-282+63—4
2 3 -1 3 _
Cy = v+ 2y and C; = 26°+28 -1

2y3 =292+ 6y -4’ 263 -262+656—4"
Since 8] < 1, |y] = 16| = 1, and |2R.(Cs7™)| < 2|Csliv™| < 2|C3} < 0.05, we

obtain Theorem 5. ) 0
Corollary 4
1 3 . . . .
a_ Z Z](’Lg + 1)(1.3 + 1)(’Lk + 1)“:4—1 =
k=1 i 4ig+...+igq =n—2k+32
208 + 20— 1

T 28 —202 + 6a—4 where  11,12,...,2k41 € N
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