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ONE VERSION OF MIRON’S GEOMETRY IN Osc*M

Irena Comié!

Abstract. R. Miron and Gh. Atanasiu in [15], [16], [17) studied the ge-
ometry of Osc* M. Among many various problems they solved the authors
introduced the adapted basis and d-connection and gave its curvature the-
ory. Different structures as almost product structure and metric structure
were determined.

Here, the attention is restricted onto the variational problem and in-
tegrability conditions on E = Osc®M, and the transformation group is
slightly different from that used in [15]). This resulted in a different theory.
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1. Adapted basis in T(Osc®M) and T*(Osc® M)

Let E = Osc®*M be a 4n dimensional C* manifold. In a local chart (U. ¢)
a point u € E has the coordinates

($a, yln7 y‘2a’ y3a) — (yOa’ yla,y‘za’ y3a) — (yaa)’
where 2% = 3% and

a,becde,...=1,2,...,n, of8,76%,...=01,23.

If in some other chart (U”, ¢’) the point v € E has the coordinates (2% , y1¢', 2%, y3')

then in U N U’ the allowable coordinate transformations are given by:

b

(1.1) (a) z% =2%(z",2%,...,2")
, F; od ayOa’
la’ _ la _ la
(b) y¢ =52y D5 Y

, ayla’ ayla'
2 1 2
(0 y** = 990 *+ Byt ¢

’

By2a 30
61/20' 4

(d) 3a’ ay> 1a Ay

2a
= + y+
y ayOa Y ayla Y
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A nice example of the space E can be obtained if the points (x%) € M
(dimM = n) are considered as the points of the curve 2 = x%(t) and y°°,
a =1,2,3, are defined by

la dz® 2 A2 e dyla 30 A3 B dy2a

TV T T a0V T s dt

M is the base manifold and (z*) € M is the projection of (z®, y1. y?*, y%%) €
Eon M. In [15], [16] y&® = 1 ddT‘f',, a=1,...,k and the transformations (1.1)

ol

have different form. If in I N U’ the equation
=z (2 (t), 2%(t), . . ., (a™(t))
is valid, then it is easy to see that

’

la’ dz*®

(1.2) y = =y' (2% y'),
Cdyt '
= —Zt = > (2%, y'%, %),
’ dy2al 13 .
B = el v (2%, 9", v, y%),

satisfy (1.1b), (1.1c) and (1.1d) respectively and the explicite form of (1.1) is
the following: '

(1.3) 7 = g% (2!, 22, ... ™)
1a’ _ oz la
y e a.’lfa y bl
2 ? .I
2 = 9%z® ylaylt | 9z° y2e
: Oz Ozb oz
i 2" ’ N 'l
y3a' — aSma yla 1bylc+3 s ylau2b+ Oz y3a
Oz80zb9x* Oredzb” oz

Theorem 1.1. The imn.sformations determined by (1.1) form a group.

By determining of the group of allowable coordinate transformations the
first step in constructing a geometry is made. The second important step is the
construction of the adapted basis in T'(E), which depends on the choice of the
coefficients of the nonlinear connections, here denoted by N and M.

The following abbreviations

0 0 o
a—ya, & = 1,2,3, and (‘9(,, = (90a - Jxo - ayoa

aaa =
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will be used. From (1.3) it follows

’

aiﬂa ’

(14)  80ay® = 010y’ = B2ay® = 83,4 = e AZ,
d;xtz’ = 00 = 2015 = 2200, — %‘E y = B
dig = oy = _;_alayi"ﬂ' _ amt?;jz:’axcylbylc N %fb —cv, |
o P
The natural basis B of T(E) is
(1.5) B = {80a; D10, 024, 03} = {Oaa}

The elements of B with respect to (1.1) are not transformed as d-tensors.
They satisfy the following relations: '

Ba = (00a¥°)0ar + (00a¥** )01 + (00a¥**)O2ar + (B0a¥>* )O3
ala = (&ayla')ala' + (31ay2a’)62(1’ + (ala.ygal)aﬁla’
020 = (8'2:13/2“’)62&’ + (azay'»’va’)aaa’
6311 = (8301y3ﬂv/ )(‘)30/ .
(1.6) B
The natural basis B* of T*(E) is
(1.7) B* = {dz®,dy'®, dy*®,dy>*} = {dy**}.

The elements of B* with respect to (1.1) are transformed in the following
way (see (1.2)):

'

ox®
Oze
dylal _ (aoayla’)dyOa + (31ay1“')dyla

dy* = (Doay™ )dy® + (D1ay™" ) dy™® + (B2ay™ )y

dy®® = (B0ay® )dy®® + (8123 )dy'® + (820 Ydy?® + (B3ay® )y

The adapted basis B* of T*(E) is given by:

(1.8) dz® = dz® & dy® = (8pay® )dy™

(1.9) B* = {8y, 6y, 6y, 6y},
where

(1.10) 6y% = dz® = dy®®
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6y1a — dyln + A.’[lady()b
6y** = dy?® + Mg dy"® + MZrdy®
6y3a — dJSa + A[ dyZb + A[ﬁ?dylb + M ad’l/Ob

Theorem 1.2. The necessary and sufficient conditions that dy™* are trans-
formed as d-tensor field, i.e.

wa’ 02
6 = 5z by

“ a=0,1,2,3,

are the following equations:

(1.11Ya) N[&;alayla’ = Af(},;z’a(,by"b' + Bosy™®
(b) 32ay2a = Mlc' dusy'e "+ 311:1/2""
(c) ]V[()b By = MGS dObyoc + ME doaylc' + dosy*
(d) M30say™ = M3 dopy® + dapy™
(e) Moy’ = M 0y™ + M By + Buey®
(f) M3y = M3 8opy® + M3 Boy™® + MY 86552 + Doy

From (1.11) and (1.4) it follows that (1.11) is a system in which equations
of second, third and fourth order appeared, so there are infinity functions

(112) Mo,, = M (o), MES = M o), M = M Geo).
Mg —MOb(TJ J) M = Mig(z, ', y%),
M()b —]V[()b (2,9 vy )
which are the solutions of (1.11). From the choice of M depends the adapted

basis B* ((1.9)).
Let us denote the adapted basis of T(E) by B, where

(113) B= {600751aa6‘2a.~,63a} = {6aa}a

and .
Soa = Ooa — N8 - N&oy - N dab
61a = 8la - N12362b - ddb

(1.14) bog = Ooa — N23,',?63,,
b3, = O34,

Theorem 1.3. The necessary and sufficient conditions that B ((1.13)) be dual
to B* ((1.9)), (when B ((1.5)).is dual to B* ((1.7)) i.e.

< baaby®® >=686°
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are the following relations:

(1.15) NP = Mt
Nia = Mgy — MigNgg
NGa = Mg, ~ M2Ngs — M3ENGs
NE = M
Nig = M- MENi;
Njz = Mg,

or equivalently

(1.16) Mp; = Ng,
ME = N + NEN
M = N3 + NPNS + NENE + NENZNGS

a

2b _ aAr2b
Mla - le
36 _ Ar3b 3b ar2c
Mla— la+N2cha
3b __ aAr3b
M2a T 4¥2a-

From {1.15) and (1.14) it follows

Theorem 1.4. The necessary and sufficient conditions that 6., with respect to
(1.1) are transformed as d-tensors, i.e.
8:1.'“

. a,'='_/_;'aa1 :)72~7
(1.17) ot = g baas @ =0,1,2,3

are the following formulae:

(1.18) N d0ay® = N8,y — Boay™®
N2 30ay® = N220hey™ + NEEOLY? — Boay®
N3 90ay® = N2Bsey™ + NEOoy™ + NEEO Y™ — Boay™
N2 91ay'™ = N2hey® — 810y
N3 81,y" = N383y™ + NEdoy™ — 81ay™
N3 Boay® = N32B3uy™® — Baay™.
From (1.13) and (1.14) it follows

(1.19) 03¢ = 83a
O2a = 820 + M3263p
Ola = 610 + ]V[lzzégb + ]fo'gé;;b
Ooa = 6oa + M261 + M6y + M6,
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From (1.12) and (1.15) it follows that
(1200 NP = N(ay'), N2 = N2(z,yt), N = N§(a, ')
No —Nob(1C y U2) —Nlb(l‘ v, JZ)
Ng2 = Na(z. 9" vy )~
2. Decomposition of T(FE). Integrability conditions -
Let us denote by Ty, Tv,, Tv,, Ty, the subspaces of T(E) spanned by
{boa}, {612}, {624}, {630}
respectively. Then we have
T(E) =Ty OTv, 0Ty, O Ty,.

Proposition 2.1. The horizontal distribution Ty is integrable if all K, “dob,
a =1,2,3 determined by (2.2) are equal to zero.

Proof. By direct calculation taking into account (1.20) one obtains

(2.1) [60a, bos] = Koa%os01a + I—{ofd'oz;aw + I_{ogdot)33d7
where
(2.2) I_{oidoz, = [(Bob — Nggd1c)N3Z] — [a/b]
Ko2% = [(Bob — Ngg 01 - 2cazc) 2d] — [a/b]
K34, = [(Bop — N§EO1e — NEBoe — N§EO3:)NGE] — a/b]

In (2.1) [boa, bob) is expressed in B. Its components in B have the form:

(2.3) [60a; bob] = Ko;dobéld + K03d0b62d + Kofdot:‘ssda
where
(2.4) Koo = Kol

Ko2p = Rodeb + I_{OaICOle?f
Ko 20, = K% + KoZ0sMae + Kog o ME

(2.4) is obtained from (2.1) using (1.19). o

Proposition 2.2. Ty, is integrable distribution if K]a 1 0 = 2,3 determaned
by (2.6) are equal to zero.
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Proof. By direct calculation, taking into account (1.20) one obtains

(2.5) [b1a, 616) = K\ 24,020 + K, 3,034
where
(2.6) K 2, = 01 NE — 01 NEY

Klanlb = [(31b - Nizlfa%)Niqﬂ - [a/b].

[61a,615] expressed in the basis B has the form:

2.7 (610, 816] = K 2% 620 + K1 2% 634,
where
(2-8) Klazdlb = I?la?,dlb
K 3, = K\ 3% + K 25, M38. u

Proposition 2.3. Ty, is integrable distribution.

Proof. We have

(2.9) (620, 626) = [(Bap — N3 Oac) Now] — [a/b],

but using (1.20) the above equation reduces to the form

(2.10) [624, 626) = 0. O
Proposition 2.4. Ty, is integrable distribution

(2.11) [63a; 83p) = O.

Proposition 2.5. For [§q, 615 we have:

(2.12) (60, 616) = Koq “1491c + Kog®1502¢ + Koa 193¢,

where

(2.13) Ky ¢y = 016 NG
K2 = (0w — Ni§02a) Nog — (Boa — Nogd1a) N5
Kooy, = (816 — Ni20og — N 834) N§E — (Boa — NiZO1a — Nogdaa) Nis -

[60a, 1] in the basis B has the form

(2.14) [60a,610] = KO;clbélc + K0361b52c + K()gclbé&?’
where
(2-15) Koiclb = Rogcw

2¢c _ I” 2¢ r- ld 2c
Kos 16 = Kog 16 + Koo “16Miq

3c _ I 3¢ - 2d 3c - 1d 3c
Koi16 = Koo 16 + Kog 16 Mag + Koo “16M14.
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Proposition 2.6. For [§q,, 2] we have

(2.16) [B0a, 620) = K2 02e + Ko2op03c
where
(2.17) K29 = 0 NGS

K3 = (B2 — N3f03a) NS — (Boa — Ngtd14) N3

In the basis B (2.16) has the form

(2.18) [60a, 521;] = Kofc%ézc + K03C2b53c»
where
(2.19) Ko2 = Kol

- 3¢  __ 1 3¢ [~ 2d 3c
Kog2p = Kog 26 T Koa“26Ms4-

Proposition 2.7. For (614,82 we have

© (2.20) [61a, 626) = K1 304030 = I} 2%y 65,
where _
(2.21) K 2% = K1 3%, = 02 NS — 1o Ny

Proposition 2.8. We have
(2.22) [510, 631,] =0.

The proof is obtained by direct calculation using (1.20).

Proposition 2.9. We have
(2.23) [624, 63) = 0.

I Comié

3. Variational problem of the Lagrangian of order three

Definition 3.1. A differentiable Lagrangian of order three on a C> manifold
E is a function L : E — R differentiable on E(rank[y'®] = 1) and continuous

at the points of E, where y'® are equal to zero.

From this definition it follows that

1 .
(3.1) das(x, ¥, y%) = 5830.83[1112

is a symmetric d-tensor field of type (0,2) on E. We say that the Lagrangian L

is regular if rank[ges] =n on E.
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Definition 3.2. We call a Lagrange space of order three a pair L3)* = (E_ L),
where L is a regular C*° Lagrangian of order 3 and the d-tensor field go, from
(3.1) has a constant signature on E.

If the metric tensor G on T(E) is defined by:
G = gapby™® 0 8y + gapby™® 0 8y™ + gapby>® 50 6y™ + gupby>® 0 6y*,

then Ty, Tv,, Ty, , Ty, with respect to G are mutually orthogonal to each other.
Let L : E — R be a differentiable Lagrangian of order three and ¢ : t €
[0,1] — (2*(t))8, € M a smooth parametrized curve, such that Ime C U. U
being the domain of a local chart of the differentiable manifold M.
The extension ¢* (of ¢) to E is given by

c* 1t e|0,1) = 2%(t)0a + di2®(£) D10 + d22%(t)Ooa + diz®(t)D3a

where the notations:

{41
o -

= g y“ =dfz®, «=1,2,3

are used.
The integral of the action of the Lagrangian L along the curve c* is given by

1 1
(3.2) Iy =/ L(_:v,d}w,d?m,d?m)dt:/ L{z, o', v%,v3)dt.
0 0

We consider the curves ¢ on E:

c;:tel0,1]—
(x2(t) + ev?(t))Bpa + (¥(t) + €v(t))01a + (¥27(t) + cv?*(t)) D20 +
(%*(t) + ev®*(t)) 034,

where

v (t) = v*(2'(2),...,z"(t)),
Y™ = dfz®, v =4, a=1,2,3,

ve(t) are C*° functions along ¢} and ¢ is a real number sufficiently small in
absolute value, such that '
2+ e UCM.

We assume that

(3.3) v*(0) = v*(1) = 0, d*v*(0) = d*v°(1) =0, a =1,2.
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The integral of action of the Lagrangian L along ¢} is

1
(3.4) Iiery = / L(z + cv, di (z + ev), d?(x + ev), d3(x + ev))dL.
0

A necessary condition that [, (¢+) be an extremal value for [, (ery 18

dl(ery

=0.
de |..o

(3.5)

Using the regularity, the operators d—dE and [ can be permuted, i.c. we get

Al ld
(3.6) d(.;) = / d—sL(r + ev,dy (x + ev),do(x + ev), d} (x + cv))dt =
0

1 .
/ [(BoaL)v® + (B1aL)div® + (Doq L)d2v® + (834 L)d} v]dt.
0

As
(BraL)djv® = dj((O1aLl)v®) — (dydraL)v*,
(02 L)d2v®* = dl}((BaaL)dlv®) — di((d}ByeL)v®) + (d28pq L) 1"
(83aL)d}v® = di((8aaL)d?v®) — d} ((d}BsaL)djv®) +
dtl((dtza3a )Ua) (df@gaL)v“

the substitution of the above equations into (3.6) results in

dlc:
(3 7) / {(80011 dr O L+ d282(,L d383,, )’U +
dt[ al,,,L ~ d} B9 L + d203,L)v* + (820 L — d} O3a L)d} v + B3q Ldjv°] } dt.

Using the notations:

(3.8) (a) E% =08, —d}01q+ d202, — 3,
(b) E(i = Ola — dtl Oga + d%83a
(C) E(ZL = 0ag — d%83a
(d) Eg = a301,
(3.7) can be written in the form:
D1 (c 0 a 2 1,a 3 2. a
(3.9) / [ES(L)o" + di{EM(LYv" + EX(L)dM + E3(L)d2v®))dt =

t=1

/ EO(L)v%dt + [(EX(L)v® + EX(L)d}v® + E3(L)dv")
0 . t=0
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The comparison of (3.6) and (3.9) gives the following important formula:

(3.10) (BoaL)v® + (01aL)d}v® + (Baq L)d2v® + (83, L)d3v"
E%(L)v® + d}EL(L)v® + E3(L)d!v® + E3(L)d*v).

According to (3.3) the last part of (3.9) vanishes and we obtain

dl(c‘) -1
£ = [ EX(Ly*dt=0.
- /0 S(Lyvdt =0

As v®(t) are arbitrary functions we get

Theorem 3.1. In order the integral of action I(c*) be an eztremal value for
the functionals I(c?), it is necessary that the following Euler-Lagrange equations
hold: ‘

(3.11) E%L) = 8,L — d}&yo L + d?82,L — d303,L = 0,
dz?® . d2ze d3z
1 la _ 2a _ 230 — .
(3.12) Y= = v s =y —

From (1.6) and (1.4) it follows that E3 is a covariant d-field, i.e.
(3.13) E} = (030y>* ) ES = (802 )ES,.
Furhter we have:

(314)  E2=03,—d'03a = (029" )02ar + (02ay> )P3er
—d} (032°7 )30 — (0303 ) B3

From (1.4) and (3.14) it follows
(3.15) E? = (022%) Eza + 2(B0ay™® ) ES,.
Using (1.4) and (3.8b) we get
(3.16) EL = (00ay®)EL + (B0ay™™ ) E2 + (Boa® )E3..

from which follows that E} is not a d-tensor.
In a similar way and using the relations (1.4) and (3.8a) we get

(3.17) EO = (8,2")ES,.

From (3.13), (3.15), (3.16) and (3.18) it follows that E2 and E? are d-tensors,
but E! and E? are not d-tensor fields.

Theorem 3.2. The equation (3.10) is invariant with respect to the change of
coordinates of type (1.8) if and only if the functions v®(z) are transformed as
d-tensors, tf i.e. v* = (Guz® Jv°.
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Proof. Let us suppose that the condition holds. Then, using the notations fl'O?l
(1.4) we have T

(3.18) v¥ = AY®, div® = BY v + A% dlv®
d2v® = C¥ v + 2B dlv® + AY d2u”,
d3v? = DY v 4+ 3CY div® + 3B d2u® + AY d3v®.
The substitution of (3.18) into
v Boar + (d1v® )1 + (d20® ) Ogar + (d30™ )30 =
v Eg + dy [v* Eg + (dyo®) E; + (djv*) EJ)
results in the following equations
(3.19) EX +dlE! = A% 8y + BY 81 + C% 82 + D% 93
El + d}E? = AY 810 + 2B 0gar + 3C% O30
E? + d{E3 = AY 820 + 3B O30
E3 = A% 341
From (3.8) it follows

(3.20) EQ+ diE) = 0a, Ey +d{E2 = 014, E: + d{E3 = 83a.
If we substitute (3.20) and (1.4) into (3.19) we obtain (1.6). The proof in
the opposite direction shows that (3.18) is a necessary condition. O

Theorem 3.3. If the expression
(a) v*Eq +dy[v*Eg + (div®) B + (i) EY)
s a scalar field with respect to the transformation group determined by (1.8).

then E3, E2, E! and E° transform as is prescribed by (3.13), (3.15). (3.16)
and (3.17) respectively.

Proof. In Theorem 3.2 it was proved that if (a) is a scalar field, then (3.18) is
satisfied, and we have

(3.21) v EQ + di v E} + (dIv)E2 + (dPv*)ED] =
AY ES + d}[AZ v EL + (BY v + AY d}v®)E2 +
(C¥v® +2BY dlv® + AY d2v*)E3)).
One solution of the above equation can be obtained if we put v¢E? =
Ag' U“Eg,, then we have:
(3.22) . B0 = AYE?
E! = AYE., + BYE%2 + C*E%,
E?2 = AY E%, + 2B ES,
E3 = A E3,.
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Using (1.4) it is easy to see that (3.22) is equivalent to (3.17), (3.16), (3.15) and
(3.13), but these equations were obtained using only the definition of E® o =
0,1,2,3 and (1.3), so (3.22) is the unique solution of (3.21). i

Remark. Ef o = 0,1,2,3 defined by (3.8) corresponds to the Claw-Syuue
covectors from [15], but in this geometry they have different form.

Theorem 3.4. With respect to the coordinate transformation (1.8) the Liou-
ville vector fields have the form

(3.23) Ty =¥'"%3a, DT(2) =y “F2a + 3y** 830
L3y = ¥'*01a + 2y°*F20 + 3y°* O34

In the geometry where Miron’s transformation group is used ([15], [16], [17])
I'(1) and I'(3) are the same as here, but I‘(z) = y1%9s, + 24%%05,.

The vector fields I'(,), @ = 1,2,3 given by (3 23) in the basis B have the
form

(3.24) Ty = 28%63a, D(2) = 23"620 + 23" 63a,
F(3) = Zéaéla + Zgaéza‘ + zg“(S&,,

The relation between the components is given by:

(3.25) 3a — ’J 2a =y a Zizia _ 3y2a. + ylb]\/jgg
=y'e, = 2J2“ +y e ME
z§“‘ =3y% + 2y2”1\1 5+t MYy

The proof is obtained by (1.19). All z from (3.25) with respect to (1.3) are
transformed as tensors of the type (1,0).
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