A NOTE ON *n*-GROUPS FOR $n \ge 3$

Janez Ušan¹

Abstract. A part of Theorem 1.4 in [2] is the following Proposition: Let $n \geq 3$ and let (Q,A) be an n-semigroup [:1.2]. Then (Q,A) is an n-group [:1.2] iff for arbitrary $i \in \{2,\ldots,n-1\}$ for every $a_1^n \in Q$ [:1.1] there is exactly one $x \in Q$ such that the following equality holds $A(a_1^{i-1},x,a_i^{n-1})=a_n$ [:1.1]. In the present paper the following proposition is proved: Let $n \geq 3$ and let (Q,A) be an n-groupoid. Then (Q,A) is an n-group iff for an arbitrary $i \in \{2,\ldots,n-1\}$ the following condition hold: (a) the (i-1,i)-associative law holds in (Q,A); (b) the (i,i+1)-associative law holds in (Q,A); and (c) for every $a_1^n \in Q$ there is exactly one $x \in Q$ such that the following equality holds $A(a_1^{i-1},x,a_i^{n-1})=a_n$. In addition, for n=3 [i=2] the conditions (a) and (b) are equivalent to the condition that (Q,A) is a 3-semigroup [:1.2].

AMS Mathematics Subject Classification (1991): 20N15

Key words and phrases: n-groupoids, n-semigroups, n-quasigroups, n-groups.

1. Preliminaries

1.1 About the expression a_p^q

Let $p \in \mathbb{N}$, $q \in \mathbb{N} \cup \{0\}$ and let a be a mapping of the set $\{i | i \in \mathbb{N} \land i \ge p \land i \le q\}$ into the set S; $\emptyset \notin S$. Then:

$$a_p^q \text{ stands for } \left\{ \begin{array}{ll} a_p, \dots, a_q; & p < q \\ a_p; & p = q \\ \text{empty sequence } (=\emptyset); & p > q. \end{array} \right.$$

Besides, in some situations instead of a_p^q we write $(a_i)_{i=p}^q$ [briefly: $(a_i)_p^q$]. For example:

$$(\forall x_i \in Q)_1^q$$

for q > 1 stands for

$$\forall x_1 \in Q \dots \forall x_q \in Q$$

[usually, we write: $(\forall x_1 \in Q) \dots (\forall x_2 \in Q)$], for q = 1 it stands for

$$\forall x_1 \in Q$$

¹Institute of Mathematics, University of Novi Sad Trg D. Obradovića 4, 21000 Novi Sad, Yugoslavia

[usually, we write: $(\forall x_1 \in Q)$], and for q = 0 it stands for an empty sequence $(= \emptyset)$.

In some cases, instead of a_p^q only, we write: sequence a_p^q (sequence a_p^q over a set S). For example: ... for every sequence a_p^q over a set S ... And if $p \leq q$, we usually write: $a_p^q \in S$.

1.2 On n-group

Let $n \ge 2$ and let (Q, A) be an *n*-groupoid. Then: (a) we say that (Q, A) is an *n*-semigroup iff for every $i, j \in \{1, ..., n\}, i < j$, the following law holds

$$A(x_1^{i-1},A(x_i^{i+n-1}),x_{i+n}^{2n-1}) = A(x_1^{j-1},A(x_j^{j+n-1}),x_{j+n}^{2n-1})$$

[: (i, j)-associative law]; (b) we say that (Q, A) is an n-quasigroup iff for every $i \in \{1, ..., n\}$ and for every $a_1^n \in Q$ there is exactly one $x_i \in Q$ such that the following equality holds

$$A(a_1^{i-1}, x_i, a_i^{n-1}) = a_n;$$
 and

(c) we say that (Q, A) is a Dörnte n-group [briefly: n-group] iff (Q, A) is an n-semigroup and an n-quasigroup as well.

A notion of an n-group was introduced by W. Dörnte in [1] as a generalization of the notion of a group.

2. Result

Theorem:Let $n \geq 3$ and let (Q, A) be an n-groupoid. Then the following statements are equivalent:

- (i) (Q, A) is an n-group [: 1.2]; and
- (ii) For arbitrary $i \in \{2, \ldots, n-1\}$ the following conditions hold: (a) the (i-1,i)-associative law holds in (Q,A); (b) the (i,i+1)-associative law holds in (Q,A); and (c) for every $a_1^n \in Q$ [: 1.1] there is exactly one $x \in Q$ such that the following equality holds $A(a_1^{i-1},x,a_i^{n-1}) = a_n$.

Proof. 1) \Rightarrow :

Let (i) holds. Then the implication (i) \Rightarrow (ii) holds tautologically.

- 2) 🔃
- Let (ii) holds. We prove respectively that the following propositions hold:

 $1^{\circ}(Q,A)$ is an *n*-semigroup;

- 2° For every $a_1^n \in Q$ there is exactly one $x \in Q$ such that the following equality holds $A(x, a_1^{n-1}) = a_n$;
- 3° For every $a_1^n \in Q$ there is exactly one $y \in Q$ such that the following equality holds $A(a_1^{n-1}, y) = a_n$; and

²For n = 3 [i = 2] the conditions (a) and (b) are equivalent to the condition that (Q, A) is a 3-semigroup.

4° For every $a, b, c \in Q$, for every sequence a_1^{n-3} over Q and for every $j \in \{1, \ldots, n-2\}$ there is exactly one $z \in Q$ such that the following equality holds $A(a, a_1^{j-1}, z, a_j^{n-3}, b) = c^3$.

Proof of 1°:

a) Let i be from (ii) $[i \in \{2, ..., n-1\}]$ and let $k \in \mathbb{N}$ satisfying

$$(1) i < k < n-1.$$

In addition, suppose that the (k, k+1)-associative law holds in (Q, A) [for k = i it holds: (b)]. Then, by (b) and (c), we conclude that for every $a_1^{2n-1}, b_1^{n-1} \in Q$ the following sequence of implications holds:

$$\begin{split} A(a_1^{k-1},A(a_k^{k+n-1}),a_{k+n}^{2n-1}) &= A(a_1^k,A(a_{k+1}^{k+n}),a_{k+n+1}^{2n-1}) \Rightarrow \\ A(b_1^i,A(a_1^{k-1},A(a_k^{k+n-1}),a_{k+n}^{2n-1}),b_{i+1}^{n-1}) &= \\ A(b_1^i,A(a_k^i,A(a_{k+1}^{k+n}),a_{k+n+1}^{2n-1}),b_{i+1}^{n-1}) &\Rightarrow \\ A(b_1^{i-1},A(b_i,a_1^{k-1},A(a_k^{k+n-1}),a_{k+n}^{2n-2}),a_{2n-1},b_{i+1}^{n-1}) &= \\ A(b_1^{i-1},A(b_i,a_1^k,A(a_{k+1}^k),a_{k+n+1}^{2n-2}),a_{2n-1},b_{i+1}^{n-1}) &= \\ A(b_i^{i-1},A(a_k^{k+n-1}),a_{k+n}^{2n-2}) &= A(b_i,a_1^k,A(a_{k+1}^{k+n}),a_{k+n+1}^{2n-2}), \\ A(b_i,a_1^{k-1},A(a_k^{k+n-1}),a_{k+n}^{2n-2}) &= A(b_i,a_1^k,A(a_{k+1}^{k+n}),a_{k+n+1}^{2n-2}), \end{split}$$

whence we conclude that: if the $\langle k, k+1 \rangle$ -associative law holds in (Q, A) and $k \in \mathbb{N}$ satisfies (1), then also the $\langle k+1, k+2 \rangle$ -associative law holds in (Q, A).

b) Let i be from (ii) $[i \in \{2, ..., n-1\}]$ and let $l \in \mathbb{N}$ satisfies the following condition

$$(2) 2 < l \le i.$$

In addition, suppose that the (l-1,l)-associative law holds in (Q,A) [for l=i it holds: (a)]. Then, by (a) and (c), we conclude that for every $a_1^{2n-1}, b_1^{n-1} \in Q$ the following sequence of implications holds:

$$\begin{split} &A(a_1^{l-2},A(a_{l-1}^{l+n-2}),a_{l+n-1}^{2n-1}) = A(a_1^{l-1},A(a_l^{l+n-1}),a_{l+n}^{2n-1}) \Rightarrow \\ &A(b_1^{i-2},A(a_1^{l-2},A(a_{l-1}^{l+n-2}),a_{l+n-1}^{2n-1}),b_{i-1}^{n-1}) = \\ &A(b_1^{i-2},A(a_1^{l-1},A(a_l^{l+n-1}),a_{l+n}^{2n-1}),b_{i-1}^{n-1}) \Rightarrow \\ &A(b_1^{i-2},A(a_1^{l-1},A(a_l^{l+n-1}),a_{l+n}^{2n-1}),b_{i-1}^{n-1}) \Rightarrow \\ &A(b_1^{i-2},a_1,A(a_2^{l-2},A(a_{l-1}^{l+n-2}),a_{l+n-1}^{2n-1},b_{i-1}),b_i^{n-1}) = \\ &A(b_1^{i-2},a_1,A(a_2^{l-1},A(a_l^{l+n-1}),a_{l+n}^{2n-1},b_{i-1}),b_{i-1}^{n-1}) \Rightarrow \\ &A(a_2^{l-2},A(a_{l-1}^{l+n-2}),a_{l+n-1}^{2n-1},b_{i-1}) = A(a_2^{l-1},A(a_l^{l+n-1}),a_{l+n}^{2n-1},b_{i-1}), \end{split}$$

whence we conclude that: if the (l-1,l)-associative law holds in (Q,A) and $l \in \mathbb{N}$ satisfies (2), then also the (l-2,l-1)-associative law holds in (Q,A).

³By (c) from (ii), this holds starting with $n \ge 4$.

Proof of 2°:

ā) By the fact that the sequences c_1^{i-1} and c_i^{n-1} over Q are not empty $[:i \in \{2,\ldots,n-1\}; 1.1]$ and also by 1° and (c) [from (ii)], we conclude that for all $x,y,a_1^{n-1},c_1^{n-1} \in Q$ the following sequence of implications holds:

$$\begin{split} A(x,a_i^{n-2},a_{n-1},a_1^{i-1}) &= A(y,a_i^{n-2},a_{n-1},a_1^{i-1}) \Rightarrow \\ A(c_1^{i-1},A(x,a_i^{n-2},a_{n-1},a_1^{i-1}),c_i^{n-1}) &= \\ A(c_1^{i-1},A(y,a_i^{n-2},a_{n-1},a_1^{i-1}),c_i^{n-1}) &\Rightarrow \\ A(c_1^{i-1},x,a_i^{n-2},A(a_{n-1},a_1^{i-1},c_i^{n-1})) &= \\ A(c_1^{i-1},y,a_i^{n-2},A(a_{n-1},a_1^{i-1},c_i^{n-1})) &\Rightarrow \\ x &= y, \end{split}$$

whence we conclude that the following statement holds

(3)
$$(\forall a_i \in Q)_1^{n-1} (\forall x \in Q) (\forall y \in Q) (A(x, a_1^{n-1}) = A(y, a_1^{n-1}) \Rightarrow x = y),$$

i.e., taking into account the monotonicity, that also the following statement holds:

(4)
$$(\forall a_i \in Q)_1^{n-1} (\forall x \in Q) (\forall y \in Q) (A(x, a_1^{n-1}) = A(y, a_1^{n-1}) \Leftrightarrow x = y).$$

Further on, by (4) we conclude that for all $x, a_1^n, c_1^{n-1} \in Q$ the following equivalence holds

$$A(x, a_i^{n-1}, a_1^{i-1}) = a_n \Leftrightarrow A(c_1^{i-1}, x, a_i^{n-2}, A(a_{n-1}, a_1^{i-1}, c_i^{n-1})) = A(c_1^{i-1}, a_n, c_i^{n-1}).$$

whence by (c) [from (ii)] we conclude that for every $a_1^n \in Q$ there is at least one $x \in Q$ such that the following equality holds

$$(5) A(x, a_1^{n-1}) = a_n$$

 $[c_1^{n-1} \text{ over } Q \text{ is arbitrary}]$. In addition, by (3), the equation (5) over the unknown x for every $a_1^n \in Q$ has **at most one** solution. Hence: the statement 2° holds.

Similarly, it is possible to prove the statement 3°.

Proof of 4°:

Let $j \in \{2, ..., n-1\}$. Then by 1°-3°, we conclude that for every $x, y, a_1^{n-1}, c_1^{n-1} \in Q$ the following sequence of implications holds:

$$\begin{split} &A(a_1^{j-1},x,a_j^{n-1}) = A(a_1^{j-1},y,a_j^{n-1}) \Rightarrow \\ &A(c_j^{n-1},A(a_1^{j-1},x,a_j^{n-1}),c_1^{j-1}) = A(c_j^{n-1},A(a_1^{j-1},y,a_j^{n-1}),c_1^{j-1}) \Rightarrow \\ &A(A(c_j^{n-1},a_1^{j-1},x),a_j^{n-1},c_1^{j-1}) = A(A(c_j^{n-1},a_1^{j-1},y),a_j^{n-1},c_1^{j-1}) \Rightarrow \\ &A(c_j^{n-1},a_1^{j-1},x) = A(c_j^{n-1},a_1^{j-1},y) \Rightarrow \\ &x = y, \end{split}$$

whence we conclude that for an arbitrary $j \in \{2, \dots, n-1\}$ the following statement holds

(6)
$$(\forall a_i \in Q)_1^{n-1} (\forall x \in Q) (\forall y \in Q) (A(a_1^{j-1}, x, a_j^{n-1}) = A(a_1^{j-1}, y, a_i^{n-1}) \Rightarrow x = y).$$

whence, taking into account the monotonicity, we conclude that for every $t \in \{2, \ldots, n-1\}$ the following formula holds:

(7)
$$(\forall a_i \in Q)_1^{n-1} (\forall x \in Q) (\forall y \in Q) (A(a_1^{t-1}, x, a_t^{n-1}) = A(a_1^{t-1}, y, a_t^{n-1}) \Leftrightarrow x = y).^4$$

Further on, by (7) and by 1°, we conclude that for an arbitrary $j \in \{2, ..., n-1\}$, for every $x, a_1^n, c_1^{n-1} \in Q$ the following sequence of equivalences holds:

$$\begin{split} &A(a_1^{j-1},x,a_j^{n-1})=a_n\Leftrightarrow\\ &A(c_j^{n-1},A(a_1^{j-1},x,a_j^{n-1}),c_1^{j-1})=A(c_j^{n-1},a_n,c_1^{j-1})\Leftrightarrow\\ &A(A(c_j^{n-1},a_1^{j-1},x),a_j^{n-1},c_1^{j-1})=A(c_j^{n-1},a_n,c_1^{j-1}), \end{split}$$

i.e., the following equivalences

$$\begin{split} &A(a_1^{j-1},x,a_j^{n-1})=a_n \Leftrightarrow \\ &A(A(c_j^{n-1},a_1^{j-1},x),a_j^{n-1},c_1^{j-1})=A(c_j^{n-1},a_n,c_1^{j-1}), \end{split}$$

whence, by 2° and 3°, we conclude that for every $a_1^n \in Q$ there is at least one $x \in Q$ such that the following equality holds

(8)
$$A(a_1^{j-1}, x, a_j^{n-1}) = a_n.$$

In addition, since (6) holds for any $j \in \{2, ..., n-1\}$, the equation (8) over the unknown x, for every $a_1^n \in Q$ has at most one solution. Hence: for every $j \in \{2, ..., n-1\}$, for every $a_1^n \in Q$ there is exactly one $x \in Q$ such that the following equality holds $A(a_1^{j-1}, x, a_j^{n-1}) = a_n$.

References

- Dörnte, W., Untersuchengen über einen verallgemeinerten Gruppenbegriff, Math. Z., 29 (1928), 1-19.
- [2] Monk, J.D., Sioson, F.M., On the general theory of m-groups, Fund. Math. 72 (1971), 233-244.

Received by the editors October 23, 1997.

⁴Since $t \in \{2, ..., n-1\}$ and $n \ge 3$, the sequences a_1^{t-1} and a_t^{n-1} over Q are nonvoid.