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GENERALIZED BOCHNER-SCHWARTZ THEOREM
FOR TEMPERED ULTRADISTRIBUTIONS

Zagorka Lozanov-Crvenkovié !, Dusanka Perisi¢!
Abstract. In the paper we prove the generalized Bochner—Schwartz the-
orem for tempered ultradistributions by using the boundary value char-
acterization of a space of weighted distributions.
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1. Introduction

By the well-known Bochner-Schwartz theorem every positive definite tem-
pered distribution is a Fourier transform of a positive temnpered measure. In
the paper we prove the generalized Bochner-Schwartz theorem for tempered ul-
tradistribtions of the Beurling and Roumieu types (S’(M") and &1} ): Every
positive definite tempered ultradistribution is a Fourier transform of a positive
measure which satisfies the appropriate growth condition (see Theorem 7). We
follow the idea of S-Y. Chung and D. Kim who proved the generalized Bochner—
Schwartz theorem for Fourier hyperfunctions [4], but our proofs are different,
since we deal with the spaces of ultradistributions.

In order to prove our main result, we use the boundary value characteriza-
tions of the spaces of tempered ultradistributions obtained in [1] and spaces of
weighted distributions defined in this paper. We will give the proofs of the as-
sertions only for the Roumieu type of tempered ultradistributions. By a similar
method one can obtain analogous results in the Beurling case.

We use multi-index notation |a| = a; +ag+...+ag, o = oqlag! - ag!, 2% =
afag? x|z = \/:r% +2z3+---+22, whered € N, @ = (a1, 03, ...,aq) €
N¢, = = (71,22, ...,x4) € RY,

P (x) = (8/821)%1(8/812) - - (3)Irg) ¥ p(x), z €RY, € C®(RY)

Let {M,, p € Ny} be a sequence of positive numbers, where My = 0. The
following conditions will be used: (for their detailed analysis see, for example

[12])
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(M.1) (logarithmic converity)
M2 < My 1My, p=12, ...

(M.2) (stability under ultradifferential operators) There are constants A and
H such that

M, < AH? 0mi2p MM, 4. p=0.1,...

<q
(M.3) (strong non-quasi-analyticity) There is a constants 4 such that
oo
M,_ pM,
Tlcalt, p=1,2,..
M My

Throughout he paper we assume that the conditions (M.1), (M.2) and (M.3)
are satisfied.
The so-called associated functions for the sequence {Afy,, p € No} are

PP =<7 Pp!
M(p) = sup log——, M(p) = sup log —,
(p) pEI‘g) & A/[P ( ) PENy A'[;?

where p > 0.
Remark 1. The Gevrey sequence
P or (p)° or T(l+sp), peNy, s>1,
satisfies all the above conditions and M (p) ~ p'/*, M(p) ~ p*/(25=Y (see [6]).

Recall, a generalized function u is positive if (u,¢) > 0, for every non-
negative test function ¢, and is positive definite if (u,p * @) > 0. for every
positive test function ¢, where g(z) = o(—x).

We use the following definition of the Fourier transform of f € L!(R?) :

fo = / e f(2)da

]Rll

A positive measure y is tempered if
/(1 + |z]?)"Pdp < oo,

for some p > 0. A positive measwre u is (M,)-tempered (respectively {M,}-
tempered) if

/exp[~M(klfvl)]du < o0,
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for every k& > 0 (respectively for some & > 0).

Spaces of tempered ultradistributions of the Beurling and Roumieu types
(8’ M) and S’ {M"}) are generalized Gel’fand-Shilov spaces which were intro-
duced in [11] and analyzed in a number of papers (see [8], [1], [13], [3] and
references therein).

Definition 1 (i) The set of smooth functions ¢ on R* which satisfy
I

mlel

(1.1) e @ ()| € Cp—1texp|~M (nlz|)],

for some C, > 0, every a € N! and every m,n > 0 (respectively
some m,n > 0) is denoted by S(M») (respectively by S{M+}),

(ii) A sequence ¢, of the elements of S(M) (respectively of S{M:})
converges to zero in S(M) (respectively in S{Mr}), as j — o, if

nﬂ“'

(1.2 sup —
) et Mg

e @)exp [M(nlz))]| -0, as j— o,
xeRY
for every m,n > 0 (respectively for some m,n > 0).
We denote by S’ (My) (respectively by &’ (M} ) the strong dual space

of SIMr) (respectively of S{Mr}),
Remark 2. The following topological inclusions exist (see [1])
Go8M) 8 FeusiMl g M) o, gM) DM} o, g{M}

S Sl(Mzn) BN gl S < SI{MP} — F SI(A"V) BN ,D/(J\'l,.)‘ S/{j\[p} < ,D/{M,,}.

Here DM») and DIMr} are the test spaces for spaces of the Beurling and
Roumieu ultradistributions (see [12]), G is the test space for the space G’ of the
extended Fourier hyperfunctions (defined as in [5]), and F is a test space for
the space F’ of the Fourier hyperfunctions (defined as in [10]).

2. He{a}\t/} }kernel representations of the spaces 7, S’ M) and
S

Several authors represented various spaces of generalized functions such
as distributions, hyperfunctions, ultradistributions, tempered ultradistributions
and Fourier hyperfunctions as the initial values of solutions of the heat equation

([24], 8}, [2])-

Denote by E(z,t) the heat kernel:

(4mt) = 2exp[—|z[2/4t], t >0,

(2.1) E(z,t) = { 0 r<o.



72 2. Lozanov—Crvenkovié. D. Perisié

The function E(x,t) is entire of order 2, for ¢ > 0, and has the following prop-
erties (see [14]):

(E0) It satisfies the heat equation.

(B1) fpo E(x,t)dz =1, for ¢t> 0.

(E2) There are positive constants C and o’ such that

o

B—E(:L‘,t)~ < Ol =Uad+d) /2001 2expi_a'|2|2 /48], t > 0.

(22) |5

where a’ € (0,1) can be taken as close as desired to 1.
(E3) E(-,t) is the element of S(*) for every £ > 0.

The following theorem gives the heat kernel representation for the space of
distributions.

Theorem 1. ({14]) 1. Let w € D’ and T > 0. Then there exists a smooth
function U(x,t) on R¢ x (0, T) which satisfies the following:

() (d/dt— AU (,8) =0, (2,£) € RY x (0.T).
(ii) For any compact set K C R?, there exists N = N(K) > 0 such that

sup |U(z, 1) < Ct™N, 0<t<T.
zeK

(iii) (u, @) = lim, o+ [U(2, t)p(x)dz, for every ¢ € C§°.

2. Conversely, if U(z,t) is a smooth function on R? x (0,T), satisfying (i) and
(i1), then there exists a unique u € D’ satisfying (iii).

The next theorem characterizes the space of tempered ultradistributions and
is a special case of {1, Theorem 6].

Theorem 2. ([1]) Let u € S"™*) (respectively S’ M}y and T be a positive

constant. A function
Uz, t) = (uly), E(x —y, 1))

is smooth on R? x (0,T) and satisfies the following:
(i) (d/dt — A)U(z,t) =0, (z,t) € R*x(0,T).

(ii) For some m,n > 0 (respectively for every m,n > 0}, there exists a positive
constant C' such that '

(23) |U(z,0)| < Cexp|M(nal) + %ﬁ? (B)] @nerix@D).
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(iii) For any ¢ € S(M») (respectively any v € STMn}),

(2.4) (u,¥) = lim / Uz, t)y(x)dx.
t—0t R
2. Conversely, for every smooth function U (x, t) defined on R? x (0, T), satisfying
conditions (i) and (ii) for some m,n > 0 (respectively for every m.n > 0), there

exists a unique u € S'*) (respectively u € & (M} ) satisfying (iii).

3. Space of weighted distributions S},

In this section we define the space of weighted distributions which will be
used in the the proof of the generalized Bochner--Schwartz theorem for tempered
ultradistributions of the Roumieu type. In the Beurling case, another space of
weighted distributions has to be considered (see Remark 3).

Definition 2.

(i) Sar is the set of smooth functions o on R? such that for every o € Ny,
there exists n > 0, such that

su}s | () [exp[M (n|z])] < oc.
zERY

(ii) A sequence p; converges to zero in the space Spy, if for every p € N, there
exists n > 0, such that

sup Z Iwga)(m)[exp[ﬁ;f(nlrc[)] —0, as j-— oo

s
TE€RY | <p

(zzz) We denote by S}, the strong dual space of the space Syy.

Note, the space S}, is the subspace of the space of distributions D’ which
follows from the following:

1. The inclusion D — Sy is continuous.

2. The set Sy \D is nonempty.

3. D is dense in Syy.

The proof of this is analogous to the proof of Theorem 2 in [13]. The following
propositions give characterizations of the spaces Sa; and Sj,.

Proposition 3. 1. Let ¢ € Spy. For every t > 0,
(3.1) U0 = [ E@-utebd TeR
R

is an element of the space Sps and U(x,t) converges to p(x) in the space Syy.
ast — 0F.
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Proof. Let ¢ € Spr. We prove that for every o € Ng, there exist n > 0, such
that

3.2 sup
3:2) sup a

(U('I: t) — <p(.7;))exp[]\-!(n]m|)] —0, ast—0.

Let 4 be a small positive number and o € Np. We have

o

£ (U@ -v@)| =] [ Bla-v.060) - o @)l

= | | B0 —y) - ) (@)
<[ B0l =) — e @iy +
lyl<s
+ ] By, )6 (@ — )|y +
lyl>6

+/ E(y, )] (x)|dy
|yl =6

=1+ I+ Is.
By the mean value theorem,
h= E(y, ) —y) — ¢V (a)ldy <
ly|<8
[ Bnle™ - 00) vl ds < C 6 [ By, Oexpl-M(ulr — by
lyl<é lyl<§

(3.3)
for some 8 € (0,1) and some n > 0. For a é being small enough. |y| < &. and
x € R4, we have

(3.4) M(njz — 6y]) > M(ﬁm).

Now, the inequalities 3.3 and 3.4 and property (E1) 1mp1y that there exists
C > 0 such that
L<Cé exp[—M’(;l.T:,)] < Cé.

There exists C > 0 such that
B= [ B e- <
[y[>6

< C(dnt)=4/2 /l <P thexpl= Mol ot

(3.5)

for some n > 0.
. The condition (M.1) implies that the associated function M (-) satisfies, (see

[2]),
(3.6) M{p+ 68) < M(2p) + M(25), p,6>0.
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Taking 2p = n|z — y| and 26 = nly|, we get

n n n
3. —y) > M( S\ — gl + =l\) = M > M=\l = M(nly).
BIMne —3) 2 M(Sle -1+ Flol) — M(alyl) 2 M) - Mnly)
By (M.1) and (M.3) (see [12, Lemma 4.1, (4.7)]) we have for some C > 0

(3.8) M(nly) < Cly| < Cv?, |yl 26,

where § is large enough. Therefore from 3.5, 3.7, 3.8, it follows

I, <
< € (4m)*2exp| — & Jexp[ 2 2 a)) L=l Ly Muly))]dy
<C (47rt)“d/2exp[ - g—i—]exp[ - ]V[(%la:l)] (/6<|y|<5 exp[ - zé—j + ]\f.f(n|y|)]dy+
+/|y|25 eXP[ - %; + M(HIyI)]dy)
< Cevaxp[ - migla](Cr+ [ e[~ o)
< Cevexp| - M(Zla])], _
where g; = (4mt)~%2exp| — g—j] tends to zero as t — 0.

Finally, by the properties of E(r,t) we have that there exists C' > 0 such
that

Iy = / E(y,t)¢\¥(2)|dy < |6 ()| [ Ey,)dy < &Cexp[~M(nla])).
’ lyl=6 fy|>6

for some n > 0, where & = fly|>5 E(y, t)dy tends to zero as t — 0T.

From above we obtain that U(z,t) converges to ¢(z), in the space Say, as ¢
tends to zero. ‘ a

Proposition 4. 1. Let w € Sy; and T > 0. Then
U(ZL',t) = (f(y)7E(T - y,t))
is smooth on R? x (0,T) and it satisfies
(i) (d/dt — A)U(z,t) = 0.

(i) There exists N > 0, such that for every n > 0, there exists a constant
C > 0, such that

39)  |[U(z,t)| < Ct~Nexp []\/I(n[:r|)] (z,t) € RY x (0,T).
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(iit) For any ¥ € Sy
{u, ) = tEI(I)la- /m;d Uz, t)y(x)de,

for every v € Sy on RY x (0, T).

2. Conversely, for every smooth function U(x,t) defined on R* x (0.T), satis-
fying conditions (i) and (%), there exists a unique u € S}, satisfying (iii).

Proof. 1. Let u € S};. Obviously, the function U(x,t) =< f(y), E(x — y.t) >
belongs to C*°(R?x (0, T")). Using the properties of E(x,t), for every fixed t > 0,
and

M(hlyl) — M(2h|x — y|) < M(2hjz]), h >0,
(which follows from 3.6 by similar argument as in 3.7), we obtain that for every
p € Nand every h > 0

IU(ZL,t){: '('LL(y), E("U - y.f))l

<C Z sup lE(“)(m—y,t)exp[]\/[(h|y|)]|

lol<p VER!
Ao+ 1y (o +d) /2 1/2 —4lz —y)?
<C sup C tHe al*/“lexp [——,-] + J\I(hlyi)]'
|(\:|Sp yERY (16t/a )
<C Z sup Clel+ig—(al+d)/2(y. 167rT/a')d/2|E(2[w — y|, 16T /a"Yexp{A (hly])]
o] <p VR
<0y Y 7D sup (exp[— M (2hx — y|)lexp[M(hly}))]
lal<p veR

< Cot~Nexp[M (2h|z))].

2. Let T > 0. By the well-known fact from the theory of distributions
there exist smooth functions v and w, such that supp v C [0,7/2], supp w C
(T/4,T/2), |v(x)| < 2N*T1/(N + 1)! and that

(3.10) (d/dx)N2u(z) = 6(x) + w(x).
Consider

(3.11) g(z,t) = /000 Uz, t + s)v(s)ds, h(z.t) = /000 Uz, t+ shw(s)ds.

Since supp v C [0,7/2], we have that for every n > 0, there exists C, C >0,
such that

T/2 N+1 ~
(3.12) |g(z,t)| < Cexp[]lf[(nlar|)]/0 (t+s)~N !ds < Cexp|A(n]z])],

(N+1)
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where (2,t) € R? x (0,T).
It is easy to see that for every n > 0, there exists C' > 0, such that

(3.13) |h(z,t)| < Cexp[M(n|z])],  (z,t) € RY x (0,T).

The functions g(z,t), h(z,t) are smooth on R? x (0,T) and satisfy the heat
equation. It can be easily proved that g(a,t) and h(z.t) can be continuously
extended on the set {(z,t)|]z € R?, t € [0,7]}. Put

x) = li ho(xz) = Lm h(z, x € R
9o(2) = lim g(z,0), o(x) = lim h(z,0),  we
The functions go(z) and ho(z) are C=(R? x (0,7T)).
Since supp w C [T'/4,T/2], function h(z,t) can be analytically continued to
{(z,t)]z € R ¢t > —T/4}. Thus ho(x) is a real analytic function.

From 3.12 and 3.13 it follows that for every n > 0, there exists C > 0, such
that

(3.14) |go(z)] < Cexp{M (n|z|)] and |ho(z)| < Cexp[M (n|z])].

The function g(x,t) satisfies the heat equation, thus, it follows from 3.10 that

d\N+2 .
(3.15) Ula,t) + h(z,t) = (E) 9(z,t) = (~A)YN+2g(a,1).
Define
(3.16) u(z) = (—A)Y2go(x) — ho(x).
From 3.14 it follows that go,hg € Si, and that (—A)¥+2gy € S},. Therefore,
u € Sy

Let us prove that U(z,t) =< f(y), E(zx —y) > . Put

Alz,t) = E(z —y,t)goly)dy, t>0;
]R(I

B(x,t) = E(z —y,tyho(y)dy, t>0.
RY

The functions A(x,t) and B(z,t) satisfy the heat equation and converge lo-
cally uniformly to go(r) and hg(x), respectively, as t converges to zero. There-
fore, they can be continuously extended to {(z,t)| v € R?, t € [0,7]} and

P_I’T(l) Az, t) = go(z) = tEI(I)1+ g(z,t), and flgr(l) B(z,t) = ho(z) = LEIél+ h(x,t).
Furthermore, the functions A(z,t) and B(x,t) satisfy the following growth
conditions: ‘
|Alz, )| < Cexp|M(alz])] < xp[m Lo teloT),

(3.17)
|B(z,t)| < Cexp[M(a|z|)] < Cexplaz?], te€0,T].
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Let us prove the first inequality. For an arbitrary § > 0,
A0 <] [ B, g0 - )y

<C E(y, t)exp[M (n|x — y|)ldy + C E(y. t)exp[M (n|z — y|)|dy
ly| <8 ly| =6
= 11 + 12.

Using 3.6 we get that

I, < Cexp[M(2n]z|)] E(y, t)exp[M (2n|y|)]dy
Jlyl<$

< Cexp[M (2n|x|)Jexp| M (2né)] /]R" E(y, t)dy

< Crexp[M (2n|2])] < Cexplaa?],

for every n > 0, and a > 0.
For & > 0 large enough, by 3.8, we have that for every n > 0, t € (0,7),
0 < b < min(1, 1/8Tn), there exists C > 0 such that

02
1< Cy (4mt) ™ 2exp| M (2n]2|)] exp[ S 1\1(271.|y|)]dy
VY 4t
< Cy(4mt) " 2ex [.M(Qnitl)]eX)[ - 6—2(1 - l)} / ex [— y_Z + 2ny 2}a’y
= b S BEPTAR S P BV A

< Coexp[M (2n|z])] < Cexp[2nz?)].

By the uniqueness theorem for the initial-value heat equation (see [7, pp.
216]), it follows that the solution of the problem

u(z,t) — Au(z,t) =0, xeR* te(0,00), u(x,0) = f(x), r € R,
is unique, provided that we restrict ourselves to the solutions satisfying
lu(z,t)| < Cexplaz?], x€R? te(0,T).
Therefore,

g(z,t) = Az, t) = y E(z —y,t)go(y)dy,

h(z,t) = B(z,t) = » E(x — y, t)ho(y)dy.

From 3.16 and 3.15 it follows
[ B =v.0u)dy = [ B = 9.01-A)"+00(s) = ho(o)ldy
R4 JRe

= (—A)N+2 /Rd E(x —y,t)g0(y)dy — L' E(x — y,t)ho(y)dy

= (_A)N+Zg($7t) - /l(.’L',t) = U(:l’.!t)a



Generalized Bochner-Schwartz theorem for tempered ultradistributions 79

ie. U(z,t) = (u(y), E(x —y,t)). 0

4. Positive and positive definite tempered ultradistributions

In this section we prove our main results. The proofs will be given for the
Roumieu case. The proofs of the assertions in the Bewrling case are analogous
and simpler. First we prove that every tempered ultradistribution and every
positive element of the space S), is a measure satisfying an appropriate growth
condition. We use the result in order to prove the generalized Bochner-Schwartz
theorem for the tempered ultradistributions.

Proposition 5. 1. Ewvery positive generalized function in S); is an {M,}-
tempered measure.

2. Conversely, if i is o positive { M, } -tempered measure it defines o positive
generalized function u in S}, in a sense that

(u, ) = /cp(:c)du(m), @ € Sn.

Proof. By Proposition 5 it follows that it is enough to prove that each positive
element of S"{Mr} belongs to S);.

Let u € Sj; be positive. Since S); is a subspace of the space of distributions
D’ we have that there exists a positive measure u, such that

(4.1) (u, @) = /cp(:l:)d,u(m), p€D.

In order to give the sense to 4.1 for all ¢ € Spy, the measure p must satisfy
an appropriate growth condition. Let us prove this. Denote by v a smooth
non-negative function with a compact support, such that (x) = 1 for |z|{ < 1.
Put

em(@) = ¥(= Jexp[-M(kla])], = e€R,

for some &k > 0. Then ¢, is a sequence of non-negative smooth functions and
converges to exp|—M (k|z|)], in the space Sps, as m — oo. Since u € S}, there
exists C' > 0 such that

lim (u,m) < C.

MmM—ro0

By Fatou’s lemma we have
0< /exp[—M(kb:l)]d,u < lim inf / em(x)dp(z) = lim (u,pm) < co.

Thus p is an { M, }-tempered measure. a
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Theorem 6. 1. Every positive u € S/ (M) {respectively v € S’{M"}) s an
(Mp)—~tempered (respectively { My} -tempered) measure.

2. Conversely, if u is an (Mp)-tempered (respectively { M, }-tempered) mea-
sure, then u defines positive u € S'™») {respectively uw € S’ (M} ). i.e

{u, ) = /cp(:c)d,u,(:v), p e SM)  (respectively p e SIMh,

Proof. Let u € S'{Mr} pe positive. By Theorem 2, for every m,n > 0 and
arbitrary T > 0, there exists a constant C > 0, such that

4.2) U, t)| < Cexp[]\/[(nlfd) + éﬁ(lzi)] (z,t) € R x (0.T).

where U(z,t) = (u(y), E(x — y,t)) and u(z) = lim,_ o+ U(x,1).

Therefore, since the heat kernel E(z,t) is non-negative, we have that if u is
a positive element in &} . Ulz,t) = (w(y), E(z — y,t)) is non-negative for
each t > 0. Therefore, for 0 <t < a < T,

0<U(z,t) = (uly), (47Tt)—d/2exp[ B h_;t_y_l_z_]) )
< (%)dm(“(y)y (47ra)—d/2exp[_ li;—ay—'?]) .

a a

< (Z>d/2(u(y),E(rc —y,a)) < (—t->d/2U(:1:,a,).

Since a is an arbitrary constant, such that 0 < a < T, we have that there
exists a constant C' > 0, such that

(4.3) 0< U(z,t) < Ct~?U(x, T).

From 4.2 and 4.3 we get that for every m,n > 0, there exists C,Cr > 0. such
that
. 1—/m
< < Ct~4? [1\/‘.- —M—]<
(4.4) 0<U(z,t) <Ct “exp M(n|z|) + 5 (T) <
< Ot~ expM(n|z|)], (z,t) € R x (0,T).

This and Proposition 4 imply that u € S,. a
Now we give a generalized Bochner-Schwartz theorem for tempered ultra-

distributions.

Theorem 7. 1. Every positive definite u € &' (respectively u € SritMe})

is the Fourier transform of some positive (M,)-tempered (respectively {M,}~

tempered) measure .
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2. Conwversely, the Fourier transform of any positive and (M,)-tempered
(respectively { M, }—tempered) measure p defines a positive definite tempered ul-

tradistribution u € 8™ (respectively u € S’{M"}), i.e

(u,0) = / P(E)du(€), ¢S ™M (respectively e M),

where @ is the Fourier transform of ¢.

Remark 3. We give the proof of Theorem 7 only in the Roumieu case. In it we
use the properties of the space Sy, of weighted distributions. In order to prove
Theorem 7 in the Beurling case, one has to define and use a slightly different
space of weighted distributions, whose definition can be obtained formally from
Definition 2 by replacing “there exists n > 07 in (i) and (it) by "for alln > 07

Proof. In the proof we use properties of the Fourier transform on the spaces
S{M} and s{Me} (see [9]). If o € SIM} we denote @(x) = @(—=), and
&(z) = ¢(~x). Since .

3=-7 wd 3=-4
for every v € S{M+} we have that

—

(4.5) prP=—prF=—0p=—30=F¢.

Let u be a positive definite tempered ultradistribution of the Rowmnieu type,
and ¢ € S{Mr}, From 4.5, using the equality

<G, >= 2m)4u, @),

and the fact that the Fourier transform is an isomorphism of the space S{A/r}
onto itself (see [9]), one can prove that the inequality

(ua‘P*‘ﬁ) _>_07 2 ES{A/III}y

is equivalent to ~
<A,y >>0, e Sttt

Let V(z,t) =< @(y), E(x — y,t) >, from above it follows
. 2
—d/2 _ |z — yl } -

exp[ 4

Viz,t) =<di(y), E(x —y,t) >=<d(y), (47t)
(4.6)

= (4mt)~4? < ﬁ,exp[ _ =yl ;tylzlexp[ N ;ty|2] >>0.

Therefore, the function V(z,t) is a non-negative smooth function and since
@ e '™} it satisfies the heat equation and

(A7) V(1) £ Cexp[M(nlz]) + %H(}”ﬁ)] (2,1) € R x (0,T).
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From theorem 2 it follows that @ = lim,_,o U(x,t) is a positive tempered ultra-
distribution of the Roumieu type. By Theorem 6 we have that 4 is a positive
{M,}-tempered measure. Since the Fourier transform an isomorphism of the

2]
(3]

4]

(5]
(6]
[7]

(8]

(9]

(10}

(1]

{12]

[13)

(14]

space &’ M} onto itself, the assertion of the theorem follows, a
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