Vol. 29, No. 2 (1999), 1-6

PROC. VIII INT. CONF.

"ALGEBRA & LOGIC" (NOVI SAD, 1998)

THE INJECTIVE HULL AND THE bc-HULL OF A TOPOLOGICAL SPACE

Yuri L. Ershov

Research Institute for Informatics and Mathematics in Education, Novosibirsk State University Pirogova Street 2, Novosibirsk 630090, Russia

Abstract

A close connection between the notion of the bc-hull and the notion of the injective hull (cf. the definitions below) of a topological T_0 -space is established.

AMS Math. Subject Classification (1991): 54C05, 54D10, 54F05 Key words and phrases: topological T₀-space, injective hull, bc-hull

Bounded complete domains (shortly, bc-domains) [1] or, which is the same, complete A_0 -spaces [2] form a subcartesian closed full subcategory of the category TOP₀ of topological T_0 -spaces. This subcategory is important for denotational semantics.

The author [3] introduced the notion of the bc-hull of a topological space X as follows. A homeomorphic embedding $\lambda: X \to B$ of a space X in a bc-domain B is called the bc-hull of X if the following conditions are satisfied:

- (1) Universality. For any continuous mapping $f: X \to B'$ from X to a bc-domain B' there exists a continuous mapping $f^*: B \to B'$ such that $f^*\lambda = f$.
- (2) Minimality. If $f: B \to B$ is a continuous mapping and $f\lambda = \lambda$, then $f = id_B$.

In [3], the existence of the bc-hull of an α -space (cf. the definition below) is established.

Yu. L. Ershov

With each topological $(T_0$ -)space X we associate binary relations \preceq_X and \prec_X on X defined as follows. For $\xi_0, \xi_1 \in X$ we set

 $\xi_0 \preceq_X \xi_1 \Leftrightarrow \text{ for any open subset } V \subseteq X \text{ from } \xi_0 \in V \text{ it follows that}$ $\xi_1 \in V (\Leftrightarrow \xi_0 \in cl\{\xi_1\}, \text{ where } cl \text{ denotes the closure});$ $\xi_0 \prec_X \xi_1 \Leftrightarrow \xi_1 \in int\{\xi \mid \xi_0 \preceq_X \xi_1\}, \text{ where } int \text{ denotes the interior.}$

The relation \preceq_X is a partial order on X and the relation \prec_X is transitive. The relations \preceq_X and \prec_X are connected as follows:

$$\xi_0 \prec_X \xi_1 \quad \Rightarrow \quad \xi_0 \preceq_X \xi_1,$$

$$\xi_0 \preceq_X \xi_0' \prec_X \xi_1' \preceq_X \xi_1 \quad \Rightarrow \quad \xi_0 \prec_X \xi_1.$$

A space X is called an α -space if for any open subset $V \subseteq X$ and point $\xi \in V$ there exists a point $\xi' \in V$ such that $\xi' \prec_X \xi$.

The following characterization of bc-domains (cf. [2, Proposition 2, §4]) is essential for the further considerations.

Proposition 1. For a topological T_0 -space X the following conditions are equivalent:

- (1) X is a bc-domain,
- (2) for any topological space Y, everywhere dense subspace Y_0 , and continuous mapping $f_0: Y_0 \to X$ there exists a continuous mapping $f: Y \to X$ such that $f_0 = f|_{Y_0}$.

Remark 2. The set of extensions f of f_0 in condition (2) has the largest element, i.e., there exists a continuous mapping $f^*: Y \to X$ such that $f^*|_{Y_0} = f_0$ and for any continuous mapping $f: Y \to X$ such that $f|_{Y_0} = f_0$ and any $\eta \in Y$ we have $f(\eta) \leq_X f^*(\eta)$.

Let X be a subspace of Y. The space Y is called an *essential extension* of X if for any continuous mapping $f:Y\to Z$ from the fact that $f|_X$ is a homeomorphic embedding of X in Z it follows that f is a homeomorphic embedding of Y in Z.

Proposition 3. If $Y \supseteq X$ is the bc-hull of X, where λ is the identity mapping id_X , then Y is an essential extension of X.

Lemma 4. The space X is everywhere dense in Y, i.e., clX = Y.

Proof. By [2, Proposition 5, §3], $Y_0 = clX \subseteq Y$ is a complete A_0 -space, i.e., Y_0 is a bc-domain. The space Y is the bc-hull of X. By the universality condition, there exists a continuous mapping $f: Y \to Y_0$ such that $f|_X = id_X$. By the minimality condition, $f = id_Y$, i.e., $Y = Y_0 = clX$. \square

Proof of Proposition 3. Let $f:Y\to Z$ be a continuous mapping such that $f|_X$ is a homeomorphic embedding of X in Z. Since any $(T_0$ -)space is homeomorphically embedded in a bc-domain, without loss of generality, we assume that Z is a bc-domain. Let Z_0 be the closure of f(X) in Z. By Lemma 4, we have $f(Y)\subseteq Z_0$. Indeed, if $\eta\in Y$ is an element such that $f(\eta)\in Z\setminus Z_0$, then $\eta\in f^{-1}(Z\setminus Z_0)$. Since $V=f^{-1}(Z\setminus Z_0)$ is a nonempty open subset, $V\cap X=\emptyset$, which is impossible. The space Z_0 is a bc-domain and $X_0=f(X)$ is everywhere dense in Z_0 . Let $g_0:X_0\to X\subseteq Y$ be a homeomorphism such that $fg_0=id_{X_0}$ and $g_0(f|_X)=id_X$. By Proposition 1, there exists a continuous mapping $g:Z_0\to Y$ extending g_0 . The continuous mapping $g:Y\to Y$ is such that $(gf)|_X=g_0(f|_X)=id_X$. Hence $gf=id_Y$ and f is a homeomorphic embedding of Y in $Z_0\subseteq Z$. \square

Remark 5. Proposition 3 gives the positive answer to Question 1 in [3]. An answer to Question 2 in [3] is also positive. Indeed, by the construction of the bc-hull $H_{bc}(X)$ of an α -space X, there exists a bc-domain B such that $X \subseteq H_{bc}(X) \subseteq B$ and X is a smooth subspace of B. Therefore, X is a smooth subspace of any intermediate space.

As is shown in [4], for any T_0 -space X there exists "the largest" essential extension λX . If λX is an injective space, then λX is called the *injective hull* of X. It is convenient to use the following obvious characterization of the injective hull:

A T_0 -space Y including X as a subspace is the injective hull of X if and only if Y is injective and is an essential extension of X.

The following theorem establishes a close connection between the notion of the injective hull and the notion of the bc-hull.

Theorem 6. A topological space X possesses the bc-hull if and only if X possesses the injective hull.

4 Yu. L. Ershov

Proof. Let $Y \supseteq X$ be the injective hull of X, and let Y_0 be the closure of X in Y. By [2, Proposition 5, §3], Y_0 is a bc-domain. Since X is everywhere dense in Y_0 , the space Y_0 satisfies the universality condition in view of Proposition 1. The minimality condition for Y_0 holds in view of Proposition 3 and the following lemma.

Lemma 7. Let Z be an essential extension of X, $X \subseteq Z$. If f is a continuous mapping from Z to Z such that $f|_X = id_X$, then $f = id_Z$.

Proof. Let $Z_0 \supseteq Z$ be the largest essential extension of Z. Then Z_0 is the largest essential extension of X. The space Z_0 is also the largest essential extension of f(Z), $X \subseteq f(Z) \subseteq Z \subseteq Z_0$. Since Z is an essential extension of X and $f|_X = id_X$, we conclude that f is a homeomorphism from X to f(X). Since the largest essential extension is unique, there exists a homeomorphism g from Z_0 onto Z_0 such that $g|_Z = f$ (consequently, $g|_X = id_X$). If $f \neq id_Z$, then $g \neq id_{Z_0}$. Thus, it suffices to prove the lemma under the assumption that Z is a maximal essential extension of X. As is noticed in [5], for any point $\zeta \in Z$ we have $\zeta = \sup_Z X_{\zeta}$, where $X_{\zeta} = \{\xi \mid \xi \in X, \xi \preceq_Z \zeta\}$. Since f is monotone, $f(\zeta) \succeq \sup_X f(X_{\zeta}) = \sup_X f(X_{\zeta}) = \inf_X f(\zeta) = \inf_X f(\zeta) \succeq f(\zeta) = \inf_X f(\zeta)$

Corollary 8. Let $X \subseteq Y_0$ and $X \subseteq Y_1$ be essential extensions of X. Then there exists at most one continuous mapping $f: Y_0 \to Y_1$ such that $f|_X = id_X$.

Let $Y \supseteq X$ be the *bc*-hull of X. By Proposition 3, Y is an essential extension of X. If Y is an injective space, then Y is the injective hull of X. Assume that the space Y is not injective. Consider the extension Y^{\top} obtained from Y by adding the new isolated largest element \top .

Lemma 9. The space Y^{\top} is injective. This space is an essential extension of Y.

Proof. Let X_0 be a subspace of X_1 , $g_0: X_0 \to Y^{\top}$ a continuous mapping, and X_2 the closure of $g_0^{-1}(Y)$ in X_1 . Then $X_1 \setminus X_2$ is an open subset, $g_0|_{g_0^{-1}(Y)}$

is a continuous mapping from $g_0^{-1}(Y)$ to Y, and $g_0^{-1}(Y)$ is everywhere dense in X_1 . By Proposition 1, there exists a continuous mapping $g_2: X_2 \to Y$ extending $g_0|_{g_0^{-1}(Y)}$. We define a mapping g_1 from X_1 to Y^{\top} by setting $g_1(\xi) = g_2(\xi)$ for $\xi \in X_2$ and $g_1(\xi) = \top$ for $\xi \in X_1 \setminus X_2$. It is easy to verify that g_1 is continuous and $g_1|_{X_0} = g_0$. Thus, Y^{\top} is an injective space.

Since the space Y is not injective, there is no largest element in Y. Therefore, there exist inconsistent elements η_0 and η_1 , i.e., there exists no element $\eta \in Y$ such that $\eta_0 \preceq_Y \eta$ and $\eta_1 \preceq_Y \eta$. We show that this implies the existence of open subsets U_0 and U_1 such that $\eta_0 \in U_0$, $\eta_1 \in U_1$, and $U_0 \cap U_1 = \emptyset$. Indeed, since Y is an α -space, we have $\eta_0 = \sup\{\eta_0' \mid \eta_0' \prec_Y \eta_0\}$ and $\eta_1 = \sup\{\eta_1' \mid \eta_1' \prec_Y \eta_1\}$. If every pair $\eta_0' \prec_Y \eta_0$, $\eta_1' \prec_Y \eta_1$ is consistent, then the family $\{\eta_0' \vee \eta_1' \mid \eta_0' \prec_Y \eta_0, \eta_1' \prec_Y \eta_1\}$ is directed. But the existence of $\eta = \sup\{\eta_0' \vee \eta_1' \mid \eta_0' \prec_Y \eta_0, \eta_1' \prec_Y \eta_1\}$ contradicts the fact that η_0 and η_1 are inconsistent. Let $\eta_0'(\prec_Y \eta_0)$ and $\eta_1'(\prec_Y \eta_1)$ be inconsistent. Then $U_0 = \inf\{\eta_1' \mid \eta_0' \prec_Y \eta\}$ and $U_1 = \inf\{\eta \mid \eta_1' \prec_Y \eta\}$ satisfy the required conditions.

Now, we will prove that Y^{\top} is an essential extension of X. Let $f: Y^{\top} \to Z$ be a continuous mapping such that $f|_{Y}$ is a homeomorphic embedding of Y in Z. Since f(Y) is homeomorphic to Y, there is no largest element in f(Y). Hence $f(\top) \notin f(Y)$. Thus, f is a one-to-one mapping. It suffices to prove that $f(\top)$ is an isolated point of $f(Y^{\top})$. Since $f(U_0)$ and $f(U_1)$ are open subsets of f(Y), there exist open subsets V_0 and V_1 of Z such that $V_0 \cap f(Y) = f(U_0)$ and $V_1 \cap f(Y) = f(U_1)$. We have $(V_0 \cap V_1) \cap f(Y) = f(U_0) \cap f(U_1) \cap f(Y) = f(U_0 \cap U_1) = \emptyset$. Since $f(\top) \in V_0 \cap V_1$, we conclude that $f(\top)$ is an isolated point of $f(Y^{\top})$. The lemma is proved. \square

Lemma 9 completes the proof of the theorem.

Thus, a T_0 -space X possesses the bc-hull if and only if X possesses the injective hull; moreover, the injective hull coincides with the bc-hull or is obtained from the bc-hull by adding the new isolated largest element.

In [5], the following characterization of spaces that possess the injective hull is obtained:

A T_0 -space X possesses the injective hull if and only if for any open subset $U \subseteq X$ and point $\xi \in U$ there exists a finite set ξ_0, \ldots, ξ_n of points in X and a family of open sets U_0, \ldots, U_n such that $\xi_i \prec_X \xi, \xi_i \in U_i$ for all $i \preceq n$, and $\bigcap_{i \prec n} U_i \subseteq U$.

6 Yu. L. Ershov

In conclusion, we present a simple example of a space that satisfies the conditions of the above characterization and is not an α -space.

Let S be an infinite set, and let P(S) be the family of all subsets of S endowed with the Scott topology. Consider the subspace

 $X = \{S_0 \mid S_0 \subseteq S, S_0 \text{ is infinite or it contains at most one element}\}$

of P(S). The injective hull of X is P(S), whereas X is not an α -space.

References

- [1] Abramsky, S. and Jung, A., Domain Theory, Handbook of logic in computer science Vol. 3, Oxford Science Publications, New York, 1995.
- [2] Ershov, Yu. L., The theory of A-spaces, Algebra i Logika 11 (4) (1972), 203-242.
- [3] Ershov, Yu. L., The bounded-complete hull of an α -space, Theoret. Comput. Sci. 175 (1997), 3-13.
- [4] Banaschewski, B., Essential extensions of T_0 -spaces, General Topology Appl. 7 (1977), 233–246.
- [5] Hofmann, K. H., Order aspects of the essential hull of a topological T_0 -space, Ann. Discrete Math. 23 (1984), 193–205.

Received February 9, 1999.