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Abstract

The purpose of this note is to give a brief and clear description of an
inequality with applications in computer graphics, including a sketch
of the proof. Difficulties related to the formulation and to the proof
of the inequality are due to the rather complicated order condition. A
complete proof and a detailed description of the application are given
in [1]. Roughly speaking, if the merging of two disjoint non-decreasing
sequences, which consist of non-negative integers and have the same
length, determines at most A + 1 maximal subsequences of the input
sequences, and if the sums of the r-th powers of the members are the
same with the both sequences for 1 < r < h — 1, then the sum of the
h-th powers is greater with the sequence which contains the largest
integer of the merged sequence.
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1. Preliminaries

Assume that two disjoint non-decreasing sequences (named c-sequence and
d-sequence, respectively) are given, both consisting of ¢ non-negative inte-
gers:

~<Ct7 d1_<_...§dz, {cl,...,ct}ﬂ{dl,...,dz}=QJ.
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Consider the non-decreasing sequence of the length 2¢ that is obtained
by merging the c-sequence and the d-sequence. A mazimal c-subsequence
is a maximal subsequence § of the c-sequence which satisfies the following
property: there are no elements of d-sequence which arise in the merged
sequence between the minimal and maximal member of S. Mazimal d-
subsequences are defined analogously. Thus interior, left and right maximal
c-subsequences have the following forms, respectively:

di<c;<...<¢<diy1, a<...L<c<dy, d<e¢;<...<e.

The sequence pair (¢, d) satisfies the order condition O(h + 1) if the total
number of (alternate) maximal ¢- and d-subsequences is equal to & + 1.

5

Figure 1. Two curves with 6 intersections determine 7 subintervals
corresponding to the ¢- and d-sequences 1.

This order condition originates from considering the curves which corre-
spond to two functions having at most h intersection points (for example,
these may be polynomial functions of a degree not greater than ») within the
considered interval. The members of the sequences correspond to the abscis-
sas of integer lattice points lying between the two curves. The c¢-sequence

! The c-sequence and the d-sequence contain abscissas z of those integer lattice points
(z,y), which satisfy fi(z) < y < f2(z), respectively fa(z) < y < fi(z).
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is a non-decreasing sequence of abscissas corresponding to the integer lat-
tice points which are below one curve and above the other; the roles of the
curves are interchanged with the d-sequence. Consequently, the number of
subintervals determined by the intersection points, as well as the number of
maximal ¢- and d-subsequences, is upperbounded by h 4+ 1 (see Fig. 1).

We say that the c-sequence and the d-sequence satisfy the equality con-
dition E(r) if
Aa+...+c; = di+...+4d; .
Without loss of generality, it will be assumed that ¢; < d;. The following
definition is in accordance with this assumption:

The c¢-sequence and d-sequence satisfy the tnequality condition I(h) if

At < dit...dh .

2. Main result

Theorem 1. If the c-sequence and the d-sequence satisfy the order condi-
tion O(h+1) and the conditions E(1),..., E(h—1), then the inequality I(h)
is also satisfied.

Theorem 1 depends on the parameter h. It will be denoted as T'(h) and
can be restated in the form

T(h): (O(h+1)AEQ)AEQ@)A...AE(h—1)) = I(h).

3. Sketch of the proof

The proof of Theorem 1 is based on induction on h. The inductive as-
sumption is primarily proved to be true for another sequence pair (y, z) of
a common length w, which is derived from the pair (c,d).

In order to define the sequence pair (y, z), the index set T = {1,...,t}is
partitioned into the subsets C = {i € T|¢; > d;} and D = {i € T| d; > ¢;}.
The condition E(r) can be rewritten in the form

Y —d) = Y (di-c). (%)

1eC €D
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All the summands can be further split into sums of elementary differences
in the following way:

(cF=dy) = (ef —(e;—=1))+...4+({(di +1)" = df), foreach i € C,
(di—¢) = (d = (di=1)")+ ...+ (s + 1) =), foreach i € D.

It is easy to conclude that the number w of elementary differences on
the both sides of () is equal to the sums which arise for » = 1. The non-
decreasing sequences y1,...,%, and z,..., 2, are defined to be the sorted
values of = within those elementary differences of the form (z+1)! —z!, that
are obtained by splitting differences ¢; — d;, respectively differences d; — ¢;.

Denote by E’, I’ and O’ respectively the equality conditions, the inequal-
ity condition and the order condition, which are related to the sequence pair
(y,z) and which are defined analogously to the corresponding conditions
with the pair (¢,d).

The following proof scheme is applied:

1. E(r)AE(OAE (LA AE(r-2) = E'(r-1) forr>2;
2. E()AN...ANE(h-1) = E()A...AE'(h-2);
3. Oh+1)AE()A...ANF'(h-2) = O'(h);

4. O'(R)ANE'(1)A...AE'(h-2) = I'(h-1);

5.

E'()A...NE(h=2)AI'(h—1) = I(h).

The proofs of the claims 1 and 5 are rather straightforward. The identity

(z+1) -2" = _(;)zT_l-i-(;)+zr_2+...+<Ti]>z+1

is applied in two opposite directions.

The claim 2 follows by applying the claim 1, for 2 < 7 < h—1. The claim
4 is proved by direct application of T'(A — 1) (the inductive assumption) to
the derived sequence pair (y,2).

The proof of the claim 3 is by far the most involved part of the proof
of Theorem 1. Depending on parity of h, two branches are developed. It
is interesting that the statements T'(1),...,T(h — 1) (applied to the derived
sequences) should be (again) applied.
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4. An example

Let t = 6, h = 3 and consider the following sequences: (¢y, ¢3, ¢3,cq,¢5,¢6) =
(0,3,3,4,4,4) and (dy,dy,d3, ds, ds,dg) = (2,2,2,2,5,5). These sequences
correspond to the curves in Fig. 2.

0 1 2 3 4 5
Figure 2. Illustration of the example

It is easy to check that these two sequences satisfy the condition O(4),
the maximal ¢- and d-subsequences being 0 — 2222 — 33444 — 55.

Further, the equalities 0+3+3+4+4+4 = 24+24+24+24+54+5=18
and 02 +3%2 432442442442 = 224224224922 4524 52 = 66 mean that
the conditions E(1) and E(2) are satisfied. In accordance with Theorem 1,
the inequality condition I(3) is satisfied:

246 =024+3133 4434434+ 4% <« 224+ 2%+ 28428+ 5% 4+ 5% = 282,
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The sets C' and D are equal to C = {2,3,4} and D = {1,5,6}, respec-
tively. Splitting into elementary differences gives:
(ca—da) = (3-2); (e3—ds) = (3-2); (ca—dy) = (4-3)+(3-2);
(di—c1) = (2-1)4+(1-0); (ds—c5) = (6—-4); (de—cs) = (5—4).
Thus w =4, (y1,¥2,¥3,%1) = (2,2,2,3) and (21, 22, 23,24) = (0,1,4,4).

The sequence pair (y, 2) satisfies the conditions:

O'(3): 0 — 2222 — 33444 — 55;
F'(1): 2424243 = 04+1+4+4 = 9
r2): 21=2242242243% < 0°4+12 +4? +4% = 33.

5. Applications

An efficient general coding scheme for sets of digital curve segments (that
are obtained from the corresponding segments of continuous curves by the
integer grid approximation) has been proposed in [1]. Theorem 1 is used for
proving correctness of the scheme for those sets of digital curve segments that
satisfy the condition that A is an upper bound for the number of intersection
points, for any two curves of the set. The sets may consist of digital curve
segments that result from digitization of curves of different kinds. If the
number of intersection points of any two curves in a set is upperbounded by

h, then h + 3 integer parameters (z1,m,bg,b1,...,bs—1), Where
r1+m—1
b, = Z " f(z)], for 0<r<h-1,
r = Iy

are sufficient for coding of the digital curve segment of the curve f(z) on
the interval (21,21 +1,...,21 + m — 1].
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