Novi S5ADp J. MATH. 13
Vor. 29, No. 2 (1999), 13-27

Proc. VIII InT. CONF.

"ALGEBRA & Logic” (Novi Sap, 1998)

FORMAL SPECIFICATION OF A GRAPH REWRITING SYSTEM
WITH ENVIRONMENTS

Mario Blazevié, Zoran Budimac and Mirjana Ivanovié
Institute of Mathematics, University of Novi Sad
Trg Dositeja Obradoviéa 4, 21000 Novi Sad, Yugoslavia
e-mail: bmario@eunet.yu, {zjb,mira} @unsim.ns.ac.yu

Abstract

The paper presents a programming language and rewriting system
called GENS (short for Graph ENvironment System). GENS is an
extension of graph rewriting systems, with addition of new concepts
(attributes and environments). GENS can be used for definition of
programming language semantics and for implementation of program-
ming languages. It is also possible to mix features from different pro-
gramming paradigms into a single programming language. GENS has
been used for experimental implementation of several programming
languages.

AMS Math. Subject Classification: 68N15, 68Q42
Key words and phrases: programming languages, rewriting systems

1. Introduction and related work

GENS (short for Graph ENvironment System) is a programming language
described and implemented as a graph rewriting system. It is simple and
contains only several language contructs. Yet, it can represent semantics of
programming languages of several programming paradigms and their com-
binations. GENS can also be used for implementation of these languages.



14 M. Blazevi¢, Z. Budimac and M. Ivanovié

GENS has been implemented in programming language Oberon-2 under
Oberon operating system. It has been used for implementation of several
programming languages: ISWIM (functional language), subset of Prolog
(logical language), Pascal (subset of a procedural language) and their various
combinations. The implementation of a simple object-oriented language is
currently underway.

GENS has originated from graph rewriting systems. Two best known
languages utilizing graph rewriting are Clean [9], LEAN (Clean’s predecessor
[2]), and DACTL {10, 13].

GENS has been introduced in [3], where its compatibility with classical
graph rewriting systems has been stressed. In [4] GENS was extended with
constructs similar to those presented in this paper.

Other recent attempts in the field of multi-paradigm languages include
combining functional languages with record-like structures. Some of them
are low-level, extending A-calculus to make it suitable for dealing with record
fields. Two such approaches have been presented in {7] and [1]. The work
[8] presents an overview of various record-calculi and compares it with an
extended-A approach.

Another field of research is dealing with contexts and explicit substitu-
tions as opposed to (-substitutions of the A-calculus. Explicit substitution
is the way the lambda abstraction works in GENS. There is a presentation
in [11] of a calculus combining the explicit and B-substitutions.

A nice overview of the functional-logic languages and the motivations be-
hind them can be found in [12]. A more ambitious language Leda, combining
functional, logic and imperative paradigm, is presented in [6].

There have also been many attempts to use imperative input/output
and other constructs in a pure functional setting. One approach, applied in
functional language Haskell, can be found in [14].

2. A description of GENS

Though simple, the language is a bit unusual. Therefore it will be described
in several steps, from the basic language constructs to more advanced fea-
tures. In each step both syntax and semantics of a construct will be given.
The syntax will be defined in Backus-Naur Form (BNF), while the semantics
will be defined by rewriting rules. We also introduce the following notation:
— denotes one rewriting step, while the —* denotes the rewriting to the



Formal specification of a graph rewriting system. .. 15

root normal form.

This section describes only the base language with no syntax extensions,
while the last section shortly explains how GENS can be extended with new
syntax constructs if needed.

2.1 The basic language element: label

The basic building element of GENS is a label (name), written down as a
string of letters, digits, and underscores.

Label =  (Letter | Digit | ’_.’) Label.

A stand-alone label is called a variable. A label can not be reduced on its
own, out of some environment which gives it a value.

2.2 Attributes and environment

Term = Label | Environment.
Environment = Label ’(° [Attributes] *)°’.
Attributes = Attribute [’,’ Attributes].
Attribute = Label ’=’ Term.

As the syntax above shows, environment is a term of the form:
Root(Label; = Value,, Labely = Value,,. . .)

where the Root and Label; are labels, and Value;, 1 = 1,2,... are terms.
Formally, we have

Definition 1. Attribute is an orderea"pair (L, V) where L is drawn from
the set of labels and V' from the set of terms. It is written as L = V. The
L is called the attribute label, and the term V is its value.

Definition 2. FEnvironment p 15 an ordered pair (t,,0,) consisting of a term
t, and an attribute set o,. For the purpose of the semantics definitions we
shall denote it as (t,/0,), while in the GENS syntaz we write it in a more
appropriate way as t,(0,). The term t, is the root of the environment p.

According to the GENS syntax only label can appear as the root of the
environment. However, during its rewriting root can be an arbitrary term.



16 M. Blazevié, Z. Budimac and M. Ivanovié

Labels of the attributes in the set o, must be all different. In mathemat-
ical terms, one environment’s attributes make a partial mapping from the
set of labels to the set of all terms. If for a label L holds that L € D,, where
D, is the domain of the mapping o,, we say that the label L is defined by
the environment p, or that p defines L. In that case we define the local value
of the label L in the environment p as o,(L). The mapping is written as the
comma-separated list of its attributes.

If two environment mappings o and o, are given, we can define the op-
eration of the asymmetric union or attribute inheritance upon them, written
as 01 >oy. This operation is similar to set union, but it preserves the unique-
ness of the attribute labels so the result remains to be a partial mapping.
The first mapping o1 has a greater priority, so all the attributes from the
second mapping oz in collision with the first get discarded from the result:

ooy =01 U (02|D(0'2]\D(0'1))

Example 1. If the mappings 01,0, are given by o1 = {(a,1),(b,2)} and
oy = {(b,3),(c,4)}, then oy > 05 = {(a,1),(b,2),(c,4)}. In this case there
was no collision for the attributes labeled a and ¢ while the attribute labeled
b was taken from oq.

We also need to introduce a kind of delayed inheritance, which is denoted
as 01 : 02. This is not an operation on two mappings, but a constructor of
a new data type which behaves exactly the same as 0y >0y but preserves its

own structure:
D(oy:02) D(o1) U D(o2)

(o1 :02)(1) = (o> 03)(])
o1>(02:03) = (o1>03):03

1l

Example 2. To illustrate the rules for environment rewriting, we show first
some examples.

*

a() —* a()

a(b=c) —* a(b=c)

a(a = ¢) —* c¢la=c)
a(b=c,d=¢€) —* alb=c,d=c¢)
alb=ca=¢) —* e(lb=c,a=¢)
ala=bb=c) —* cla=bb=c)
ala=bb=c)) —* cla=blb=c),b=c)



Formal specification of a graph rewriting system. .. 17

An environment can not be rewritten unless it defines its root. If, on
the contrary, the local value of the root in this environment is V' (then the
environment is of the form: R(...,R = V,...) where R is the environment
root), it can be reduced to the term V(...,R = V,...). The new root V
could be an environment itself, and in that case next rewriting step should
unify the attributes in two mappings. If we write them more formally, the
rewriting rules are very short:

T=LU{{t/o)|teT,o:L—T}

(1/o) — (o()/o) ,if l € D(o)

(/o) [a') — (t/ova’)
where | and L represent a label and the set of all labels, while ¢ and T
represent any term and the set of all terms, respectively. The same notation
holds for other semantics definitions.

2.3 Lambda abstraction

Term = Label | Environment | Abstraction.
Abstraction = ’\’ LocalNames ’->' Term.
LocalNames = Label [’,’ LocalNames J].

Lambda abstraction is a well-known language construct from the classic A-
calculus and from functional languages. Even its syntax in GENS is exactly
the same as in functional languages. But its semantics is different because
GENS does not have the application construct which the A-calculus is based
on

Example 3.
\a—>b —* \a—>1b
\a— >a -* \a—>a
c(e=\a— > a,d=¢e) —* (\a= >a)(c=\a->a,d=¢)
c(c=\a— > a,a =¢) —* e(le=\a—>a,a=¢)
c(e=\a— > a(),a =e) —* (\a— > a())(c=\a— > a(),a = ¢)
cle=\a—>b(d=a),a=e) —* ble=\a—>b(d=a),a=¢e,d=c¢)
cle=\a,b— > e(f = a), —* ela=bb=d,f=0b,

a="b,b=d) c=\a,b— > e(f = a))
ela=bb=d,f=d
a=>b,b=d) c=\a,b— > e(f = a))

&)
—~~
S
Il
e
Q
|
\
—

el
I
Y
3y
~
-
f
2
:—/
*



18 M. Blazevi¢, Z. Budimac and M. Ivanovié

A lambda abstraction can not be rewritten on its own. It is rewritten
only in the root of some environment which defines all its local names. In
that case the rewriting is done by replacing all the appearances of the local
names in the body of the lambda abstraction by their values in the given
environment. In a more formal notation, the rewriting looks like this:

T=Lu{{t/jo)|t€T,o:L—T}U{Al,la,....0,—>tlle L,teT},

(l/o) — (o(l)/o) ,if l € D(o)

{(t/5) /o) = (o)

</\ll,lg,...,ln—>t/0') — <t[11:0'(ll),12—_—0'(12),...

' ciirlp =0(l)]fe > ,if ly,...,l, € D(o)

The meaning of the replacement t[l; = t1,ly = tq,...,l, = t,], or shorter
t[o], is similar to its meaning in A-calculus and functional languages:

l[o] = 1,ifl ¢ D(o)

lo] = o(l),ifl € D(o)

{t/a)o’] = (t/alo’])

alo’] = {(Lo'DI,1) € o}

(M, lz, . = > )0l = Aayla, oo b= > (Ol Don {2t} )

In the last two rewriting examples and in the rules of replacement, a sig-
nificant difference from the classic A-calculus can be seen. In A-calculus the
multiple abstraction Aa,b,c.Term is just a shorthand for Aa.Ab.Ac.Term,
while in GENS these two expression have a different semantics. The reason
for this is that the variable names in GENS exist outside of their lambda
abstraction, so the renaming of free variables can not be done.

2.4 Sequence and field

Every language construct described so far has descended from the functional
languages. The environment can be seen as a function call with its argu-
ments named, and the lambBda-abstraction is in the very basis of the most
of functional programming languages. Imperative languages, on the other
hand, are based on the control flow, or the instruction sequence. Therefore,
in order to represent the imperative languages in a natural way in GENS,
we have to extend it with some new constructs:

Term = Label | Environment | Abstraction | Sequence | Field.
Sequence = Term ’;’ Term.
Field = Term ’.’ Term.



Formal specification of a graph rewriting system. . . 19

We shall soon see that sequence and rewriting are actually just a syntactic
sugar and that they can be represented through other constructs. But for
now, let us consider them as new primitive constructs. Their behavior can
be easily seen from some examples.

Example 4.

a;b - b

a(c =d);b —* blc=4d)

a(c =d);c —* d(c=4d)

a(c =d);b(c=¢) —* blc=c¢)

a(c = d);b(e = ¢) —* blc=d,e=c)
a(lc =d);\c=>ble=c) —-* blc=d,e=d)
a.b —-* b

a(c=d).b -* b

a(c =d).c —* d

a(c = d).b(c =e) —* blc=¢e)

a(c =d).ble=¢) —* ble=rc)
a(c=d)\c— >ble=c) —* ble=d)

A sequence is a construct known from imperative languages. The rewrit-
ing of the sequence Terml;Term?2 is done by reducing first Terml to its
root normal form Terml1’. Then we take its mapping and proceed with
rewriting of the environment (T’erm2/c{). The multiple sequence

Termy;Termg;...;Termy

is grouped to the right, as Termy;(Termg;(...;Termy)...). Each subse-
quent term adds to the mapping passed from left to the right.

A field can be described in a similar way. The first term is also reduced
to the root normal form and the resulting mapping is passed to the right
term before its rewriting. Contrary to the sequence, the passed mapping gets
discarded from the final rewriting result. A field can be thought of as an
analogy of the record field access or the method call from the object-oriented
languages.

The rewriting rules defining semantics for a sequence and a field, are as
follows (here 1 denotes an undefined value).

T= LU{{t/o)teTAo:LTIu{NtteTAlE L*}U
U{t1;talts,t2 € T} U {t1.t2]t1,t2 € T}



20 M. Blazevié, Z. Budimac and M. Ivanovié

— <a(£)/a . ifo(l)# L
<,\Zt/a> - <t[ = a(l)]/a>, if (Vi) (a(ls) # L)

(tijta/a) —" 1, if (t1/0) =" (t1/a1) A
Ata/oy) =7 15
(titafo) —* (t3/03), if (t1/0) =* (ti/o])A

Ntz [ {}:i01) =% (ty / ohi01)
The given rules are sensitive to the order of application. We leave them that

way, because the final semantics of GENS will be presented soon (in Section
2.6).

2.5 Failure and disjunction

The elements of GENS described so far are quite enough to describe not
only a simple command sequence from imperative languages, but also the
branching, loops and other control structures. However, the behavior of an
exception is very hard to describe as an instruction sequence (it is practi-
cally impossible to extend an imperative language with exceptions without
substantial modification of its semantics).

The modification in semantics of GENS needed to support exceptions,
will be simple: we only need a name to denote error. This name, Fazl, will
have a special treatment in the semantics. If a term reduces to Fail, we
shall say that the rewriting failed. Now, if the rewriting of the first term in
the sequence Terml; Term?2 fails, the rewriting is not continued to Term?2

. but stopped. The rewriting of a sequence results with Fa:l. The same holds
for a field.

There still remains the problem of "catching” and correcting the excep-
tion. Hence, we add yet gnother (and last) construct to GENS: Disjunction
of two terms.

Term = Label | Environment | Abstraction |
Sequence | Field | Disjunction.
Disjunction = Term ’|’ Term.

Its behavior is as follows: if T'erm1 reduces to any root normal form other
than Fail, that is the root normal form of the whole disjunction. If rewriting
of Term1 fails, then the normal form of disjunction is equal to the normal



Formal specification of a graph rewriting system. .. 21

form of the other term, Term2. A disjunction is used to correct the local
failure and to finally reduce the whole expression successfully.

The required changes in the semantics of GENS can be seen from the
following picture:

T= LU{{t/o)teTAo:LTyU{NttcTAleL*}U
U{t1;taltr, 12 € T} U {t1.ta]t1, 80 € T} U {t1]ta |t1,t2 € T} U { Fail}

< (t/o1) /0'2> o .
(ifo) — (o()]o), if o(l) # L
</\l.t/cr> <t[l = U(l)]/cr>, if (Vi) (o(l) # L)
(t1;t2/0) —* Fail, if (t1/0) —* Fail
(tiitefo) =7 8y, if (/o) =7 ((1/01) Ata/o1) =" 1)
(t1.t2/0) —* Fail, if (t1/0) —* Fail
{titafo) —* (thah), if {ti/a) —=* (/o)A
Mtz [ {}roy) —* (ty ] o)1)
(tlltg/a') —* tll’ if (tl/cr) —* t’l ;é Fail
(tiltz/o) —* 1y, if {t1/0) = Fail A(tz2/0) =" 4
The given rules are also sensitive to the order of application. The final
semantics will be given in the following section.

Example 5.
Fail;a —*  Faal
Fail.a —* Fail
alb —* a
(a(b = Fail)la(b=c));b —* Fail

One dubious feature of the presented semantics can be seen .in the last
example. Since a(b = Fail), the first branch of the disjunction, succeeds
(doesn’t reduce to Fail), it is taken as the result of disjunction. When the
sequence rewriting continues, it leads to the term b(b = Fail) which fails. If
we are allowed to ”change our mind” in this moment and choose the other
branch of disjunction, the final result would not be Fail but ¢(b = ¢). The
rewriting would succeed even though a failure occurred after the disjunc-
tion rewriting. Then we would have a semantics similar to backtracking in
Prolog.



22 M. Blazevié, Z. Budimac and M. Ivanovic

2.6 Continuation

Continuation technique is commonly used in functional programs. It consists
of transforming every function in such a way that it accepts one additional
parameter, called continuation, which the function calls after preparing the
environment. The biggest objection to this technique is that the transformed
functions lose much in readability and become harder to use, since they
need to receive yet another parameter. However, since all parameters in
GENS can be inherited implicitly, the readability of the programs containing
continuations is not of our concern.

What follows is the final GENS semantics.

T= Lu{{tjo)teTho:L—TIu{Atlte TATE L*}U
U{t1lts |t1,t2 € T} U {Fail, Split, Drop}

((t/or) Jo2) — (t]o1vas)
(1/o) R { Ed(l [7), io(l)# 1

a:b = /\C.<a/{(C, (b/{(C,C)}>)}>

a.b = Split;a; Split; b; Drop
N ty, if (t1/o) =*t] # Fail
(lta/ ) - { th, i (1)) —* Fail A (ty)o) —* ¢,
(Split)o) ~ (C/ o)
(Dropjoi:09:03) — (C / o1 DO’3>
(Fail/o) —  Fail

The continuation parameter will be passed over as the value of the special
name, which is in the semantics definition denoted by C. If the continuation
is empty, all terms behave as described by now. In the other case, any
expression that reduces to the root normal form (except the name Fail)
should not return the result until it reduces first the continuation.

What is gained by continuation? First, it allows us to define the sequence
and field as common terms (so we “proved” the claim that sequences and
fields in GENS are only syntactic sugar). The changes needed in the GENS



Formal specification of a graph rewriting system. . . 23

semantics are not too big. Second, we solve the problem of backtracking
mentioned in the previous section. Now the rewriting of the last term suc-
ceeds even if a failure happens in its continuation, though the disjunction
has already been successfully reduced:

(a(b = Fail)|a(b=c));b —=" c(b=c).

2.7 Atoms

Every programming language has some built-in basic data types. In GENS
these types are called atoms and they include 16-bit integers, characters,
strings and texts {textual files). This choice has been made according to the
basic purpose of the language, to experiment in the programming language
area.

There is not much to say about integer atoms. Character atoms are
written between the single quotes, and strings can be written between either
single or double quotes.

Atoms can not be rewritten, which means they are always in normal
form. Contrary to labels, they cannot be assigned a value by any envi-
ronment and they cannot be in any environment root. The only way to
handle atoms is through the built-in functions, which shall be described in
the following section.

2.8 Primitive functions

Every built-in operation is assigned to one label in the system environment.
There are also predefined names that are not assigned any value, but are
used as the argument-holders for built-in operations. These are for example
Value, Property, Test, Yes, No, etc. The argument names are fixed.

All built-in operations of GENS can be roughly divided in three groups:
low-level operations, operations on atoms, and parser operations. We shall
shortly describe here only those functions that will be mentioned in the rest
of the paper.

Low level operations are used for elementary changes of the environ-
ment.

Seq, Field and Dis are the root names of sequence, field and disjunction.
For example, the term Seq(Left = Terml, Right = Term?2) is equivalent to
the sequence Terml; Term2. Reduce reduces the value of the name Value



24 M. Blazevi¢, Z. Budimac and M. Ivanovié

to its root normal form. Set assigns the value of the name Value to the
name that is the value of the name Property. Lambda is defined as follows:
Lambda(Property = X,Value = Term) = \X— > Term. FreshVariable
creates a new name and assigns it to the label Value. Guard and Match
are the labels of the operations used for pattern matching and unification.
System holds the system environment, which defines all the operations given
here.

Operations on atoms are used to work with atoms.

Add, Sub, Mul, and Div are the functions for adding, subtracting, mul-
tiplying and dividing integers. The expected parameters are the values of
labels 1st and 2nd. Before the operation the values of these names are
reduced to root normal form, which means that these functions are strict.
Equal, Less, Greater, LessEq, GrEq, and Different are predicates which
compare the value of the name 1st with the value of the name 2nd. In
case the relation is satisfied the result is True, and otherwise the rewriting
fails. And, Or and Not are the standard logical operations. For example, And
succeeds with the result True if the rewriting of both names 1st and 2nd
succeeds. If is the primitive branching function. If the rewriting of the
name Test succeeds, the name Yes reduces, and otherwise name No.

Names like 1st, 2nd, 3rd etc. are often used when we do not have a
more sensible name for an argument. Therefore these names are taken for
default wherever the label of the attribute is left out. For example, the term
a(b, 7, x=c) is equivalent to the term a(lst= b, 2nd= 7, x= c¢).

2.9 References

In many modern procedural languages the parameter passing through a ref-
erence is used, a mechanism hard to combine into declarative programming
languages.

When we use explicit references we must explicitly state when we want
to access the variable that holds a reference, and when the variable it refers
to, for example a:= b and a® := b in Pascal. With implicit references, the
two variables become complete synonyms, so that by changing the value of
one variable we can change the other without knowing it. An example of
implicit references is the parameter passing by a reference from Pascal and
its descendants.

Usefulness and sensibility of references in declarative programming lan-



Formal specification of a graph rewriting system. . . 25

guages can be discussed. However, since GENS is not created as a general-
purpose language, but as a meta-language for implementation of a wide class
of other languages, a reference mechanism has been added to it.

Explicit references can be modeled with no need for a new extension of
GENS. The name Transparent is used to model implicit references. This
operation takes the label that is the value of Property, and makes it im-
plicitly refer to its former value. If Property’s value is not a name, the
rewriting fails.

Transparent(Property = ¢,z = a);
Let(a = 1);
Let(z = 2) —* Let(a =2,z =2)

3. Conclusion

GENS has been implemented in the programming language Oberon-2 under
Oberon operating system. It has been used for implementation of several
programming languages: ISWIM (functional language), subset of Prolog
(logical language), Pascal (subset of a procedural language) and their various
combinations. The implementation of a simple object-oriented language is
currently underway.

GENS is a low-level language. To an unexperienced programmer, GENS
programs are hard to read and write. To ease the usage of GENS, a special-
ized language G has been developed. G is a language similar to BNF and
to languages used in compiler generators, which use attributed grammars
to specify syntax and semantics of (other) programming languages. G has
been written in GENS and its purpose is to define syntax of a programming
language (or arbitrary term) and to specify its translation into an equivalent
GENS program.

Using G, the mentioned programming languages have been implemented.
Besides, lambda calculus and “classical” graph rewriting system have been
implemented as well. All implemented languages can be used for implemen-
tation of other languages thus forming generations of languages emerging
from GENS.

The translation of a programming language (say P°) is fully automated.
When a P program is loaded into the system, its translation down the chain
of languages is automatically invoked. The parser created for a language P
is then saved so that every other translation is done directly.



26

M. Blazevié, Z. Budimac and M. Ivanovié

This is achieved by considering filenames as attribute labels, file contents

as attribute values and the set of files in a folder as the environment.

In this way GENS has been extended to an integrated programming

environment for programming language development. Further research will
be concentrated onto the support for persistence, input/output and other
issues necessary for the development of practical programming languages.

References

[1]

(8]

Ait-Kaci, H. and Garrigue, J., Label-selective lambda-calculus: syntax
and confluence, in: Proceedings of the 13th Int. Conf. on Foundations
of Software Tech. and Theoret. Comput. Sci., Lecture Notes in Comput.
Sci., Vol. 761, pp. 24-40, Springer-Verlag, 1993.

Barendregt, H., van Fekelen, M., Glauert, J., Kennaway, J., Plasmeijer,
M. and Sleep, M., LEAN - an intermediate language based on graph
rewriting, Parallel Comput. 9 (1988), 163-177.

Blazevi¢, M. and Budimac, Z., Attributed graph rewriting system, in:
Proc. XII Conf. on Appl. Math. PRIM ’97. (Subotica, 1997), pp. 11-19,
University of Novi Sad, 1998.

Blazevi¢, M., Reduction of attributed graphs (in Serbian), in: Proc.
Conf. ETRAN ’98. (Zlatibor, 1998), to appear.

Blazevi¢, M., Implementing Prolog using attributed graph reduction (in
Serbian), Seminar paper, 45 pp., Institute of Mathematics, University
of Novi Sad, 1998.

Budd, T. A, Multiparadigm Programming in Leda, Addison-Wesley,
1995.

Dami, L., A lambda-calculus for dynamic binding, Theoret. Comput.
Sci. 192 (1998), 201-231.

Dami, L., A comparison of record- and name-calculi, in: ed.
D. Tsichritzis, "Objects at large”, pp. 71-83, Centre Universitaire
d’Informatique, University of Geneva, 1997.



Formal specification of a graph rewriting system. .. 27

[9] van Eekelen, M., Huitema, H., N6cker, E., Plasmeijer, M. and Smetsers,
J., Concurrent Clean, Language Manual 0.8, Technical Report 92-18,
50 pp., University of Nijmegen, 1992.

[10] Glauert, J., Kennaway, J. and Sleep, M., DACTL: a computational
model and compiler target language based on graph reduction, ICL
Tech. J. 5 (1987), 509-537.

[11] Hashimoto, M. and Ohori, A., A typed context calculus, Internet home-
page of Kyoto University, Japan.

[12] Moreno Navarro, J. J., Expressivity of functional-logic languages and
their implementation, manuscript, 32 pp.

[13] Papadopoulos, G., Concurrent object-oriented programming using term
graph rewriting techniques, Inform. and Software Tech. 38 (1996), 539
547.

[14] Peyton Jones, S. and Wadler, P., Imperative functional programming,
in: Proc. 20th ACM Symp. on Principles of Programming Languages
(Charleston, 1993), pp. 71-84, Assoc. Comput. Mach., 1993.

Received March 19, 1999.



