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Abstract

This paper deals with a representation of tournaments (complete
directed graphs with loops) by algebras having one binary operation.
The variety generated by such algebras is our main object of investiga-
tion. We focus on those varietal properties which involve questions of
decidability, i.e. existence of different kinds of algorithms. It is shown
that the considered variety has decidable equational theory and solv-
able word problem. However, its elementary theory 1s undecidable.
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1. Introduction

In the sense of graph theory (see e.g. [5] and [8]) a tournament is a complete
directed graph, that is, a digraph in which every pair of different vertices is
connected by exactly one directed edge. Of course, it will make no major
difference if we consider tournaments to have loops (edges leading from
a vertex to itself). More precisely, the concept of a tournament can be
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formalized as a relational structure T = (T, —), where T is a non-empty
finite set and — is a reflexive binary relation on 7" such that foreach z,y € T,
z # y, exactly one of the assertions z — y, y — z is true.

In 1965, Z. Hedrlin observed that any tournament T can be transformed
into a groupoid by defining the multiplication such that zy = yz = z if
and only if z — y for all z,y € T (note that this yields z? = z for all
z € T). It is easy to see that the described construction is in fact a bijective
correspondence between the class of all tournaments and the class of all finite
commutative groupoids satisfying zy € {z,y} for all z and y. Therefore,
the groupoids obtained from tournaments in this way will be also called
tournaments, whenever it makes no confusion.

Since then, algebraic representations of tournaments have become the
subject of many interesting investigations. Such is the paper of Miiller,
Nesetfil and Pelant [10] - which was the inspiration for our work - who
followed Hedrlin’s approach. Another algebraization of tournaments is pre-
sented and studied in [1], [2], [3], [4] and [9], just to mention some of the
papers dealing with the topic. Finally, we should refer to a recent paper [6],
where it was proved that the equational theory of the class of all tournaments
is not finitely based, thereby solving a problem posed in {10].

In this paper we consider the variety of groupoids generated by the class
of -all tournaments, which will be denoted by 7 in the sequel. Qur aim is
to examine main algorithmic problems concerning 7. First of all, we prove
that the equational theory of 7 is decidable. We proceed by locating the
finitely generated free algebras of 7 and showing that 7 is locally finite in
order to solve its word problem in a uniform way. In the final section, it is
proved that 7 has undecidable elementary theory by making use of some
methods and techniques of model theory.

2. The word problem for 7

Let Q, denote the set of all n-element tournaments having {1,2,...,n} as
its universe. Clearly, for each natural number n, Q, is a finite set and each
n-element tournament is isomorphic to some member of ,,. We begin this
section with a lemma, which shows that the tournaments in €, are sufficient
to decide whether an equation with n variables holds in 7 or not.

Lemma 2.1. Let p = p(z1,...,2,) and ¢ = q(z1,...,T,) be arbitrary
groupoid terms. Then T = p = q if and only if Q, = p ~ q.
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Proof. (=) is obvious. (<=) Suppose p & ¢ does not hold in 7. Then there is a
tournament T and ay, .. .,a, € T such that pT (as,...,a,) # ¢T(a1,...,an).
But the chosen elements ay,...,a, form a subtournament of T, say T, and
we have T £ p ~ ¢q. Now it just remains to expand T; to a tournament
T, having exactly n elements. Clearly Ty £ p~gandsoQ, fEprgq. 0O

Corollary 2.2. The equational theory of T is decidable.
Lemma 2.3. F7(n) € ISP, (Q,).

Proof. Suppose Q,, = {T1,...,T,n}. Consider the algebra
P,=T} x...xT",

We prove that Fr(n) € IS(P,,).
Let X = {%1,...,Z,} be the set of free generators of Fr(n). Consider

the mapping @ : X — P, defined for 1 < ¢ <nand 1 <j < mn” by

(#(2))(5) = af1t,),

where ¢ and r are respectively the quotient and the remainder of j divided

by o™, T; = {agi), . ..,ag)} and fo, fi,..., fan_1 are all transformations of
the set {1,2,...,n}.

Now @ extends in a unique way to a homomorphism ¢ : Fr(n) — P,.
Thus it remains to show that ¢ is injective.

Suppose that p; # pz in Fr(n). This means that 7 & p1 = pp. It is
clear that for 1 = 1,2 and 1 < 5 < mn™ we have

(@(@ENG) = p; (o), ey,

where ¢, denote the same as before. By Lemma 2.1, it follows that

Ty ¥ p1 = p2
for some k € {1,2,...,m}, i.e. there are elements agf), . (k) € Ti such
that - " ®
plk(al(l,.. )#p "(all,...,aln).

Choose among fo, f1,..., fan—1 a mapping f; such that fi(:) = [; for all
1 < i < n. Doing so, we obtain

T k k T k
PL A8y ) # 2 (g2 )
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which is nothing else than

(p(P))((k = sg(t))n" + 1) # (@(P2))((k — sg(t))n" + 1).

The latter implies that ¢(51) # ¢(P2) and the lemma is proved. O
Corollary 2.4. T is locally finite. -

Corollary 2.5. There is an algorithm which for every finite groupoid G
decides whether G € 7.

Proof. Let |G| = n. We have that G € 7 if and only if G € H(F7(n)). By
Lemma 2.3, Fr(n) € IS(P,), so H(F7(n)) is contained in HS(P,). There-
fore, if G € 7 then G € HS(P,). The converse of the latter implication
is trivial, thus we have that G € 7 if and only if G € HS(P,). Now the
corollary follows immediately, because for each n one can effectively con-
struct P, find all its subalgebras, then all quotients of these subalgebras
and finally check whether G is isomorphic to some of the obtained quotients.
O

As a consequence of Lemma 2.3, we can also strenghten a result from
Miiller, Nesettil and Pelant, [10].

Corollary 2.6. 7 is not finitely generated.

Proof. If T was generated by finitely many finite groupoids, then by Lemma
2.3 each of those groupoids would have been generated by finitely many
tournaments, so that a finite set of tournaments would generate 7, which is
shown to be impossible in the paper cited above, Section 5.1. O

The main result of this section is the following one.
Theorem 2.7. 7 has uniformly solvable word problem.
Proof. Let (G, R) be a presentation in 7. Our goal is to prove that one can

effectively construct Pr(G, R).

First of all, as 7 is locally finite, P7 (G, R) must be a finite groupoid. Let
|G| = n. By Lemma 2.3, P7(G, R) € HS(P,,). As before, one can construct
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all quotients of all subalgebras of P,,. Note that only a finite number of alge-
bras is obtained in such a way. For each of these finite algebras, there is an
obvious way to check whether they are n-generated. If so, check whether the
relations from R are satisfied for some set of n generators of the considered
algebra. Therefore, we picked all homomorphic images of Pr(G, R). It is
clear that the image having most elements must be isomorphic to Pr(G, R).

The theorem now follows immediately. O

3. Undecidability of the elementary theory of 7

In this section we are going to prove that Th(7) is undecidable. To do that,
we shall apply techniques from McKenzie and Valeriote {7]. But first we
need to introduce the necessary notions and terminology which will be used
below.

Definition 3.1. Let £g = {r1,...,7%; f1,..., fi} be a finite first-order lan-
guage, where r;, 1 < ¢ < k are predicates, f;, 1 < j < I are operation
symbols (constants are considered as 0-ary operation symbols) and let X be
an arbitrary first-order language. An interpretation scheme for 3q in ¥ is,
for some fixed integers m > 1, n > 0, a (k4 [+ 2)-tuple

VY =(Un,Eq,R1,...,Rx, F2,..., F?)
of formulz of type ¥ such that
Un = Un(x,y),

Eq = Eq(x1,x%3,y),
R, = Ri(x1,...,%,,Y),
Fy = Fi(xa,.. "qu7XQj+laY)7
where x, X1, Xg,... denote sequences of m variables, while y is a sequence

of n variables. The integers p; and g; denote, respectively, the arities of
the symbols 7;, 1 < ¢ < k and f;, 1 < j < [. All variables involved above
are different and all free variables of the formulae just listed are among the
variables appearing in the brackets following the names of the corresponding
formulze.

Definition 3.2. Let A be a model of type ¥ and w € A™. We say that the
pair (A, w) accepts the scheme ¥ if there exists a model

A A A A
Ag = (Ag,ro, ... pfo Ao Aoy
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of the type o and a mapping ¢ from Un{AdW) = {v € A™| A = Un(v,w)}
onto Ag such that for all vq,v,,... € Un{AW) the following three conditions
are satisfied:

(1) @(vi) = @(vy) if and only if A = Eq(vy,ve, w).
(2) If 1 € ¢ <k and p; is the arity of r;, then

(e(v1), -, o(vp)) € ’I‘;AO if and only if A | Ri(vy,...,vp,W).

(3) If 1 <35 <! and g; is the arity of f;, then

2 (@(v1), -+, 9(vg,)) = 9(Vgy41) if and only if

AE Fj(vla""vqj+1aw)'

It is not difficult to see that if the pair (A, w) accepts the scheme ¥,
then Ay is uniquely determined up to an isomorphism. Note that

EqA™) = {{vi,v3) € A™ x A™| A |= Eq(vy,v2,w)}

is an equivalence relation on A™. Therefore, we are going to use the notation
A(Y,w) for the model Ap as above, having the set of equivalence classes of
the restriction of Eq{A %} to Un{A W) as its universe.

We are prepared to give the definition of interpretability of theories.

Definition 3.3. Let Yo and ¥ denote the same as above and let Ky and
K be classes of models of type Yo and X, respectively. The class Ky is
interpretable in K if there exists an interpretation scheme ¥ such that for
all B € Kg there exist A € K and w € A™ such that B 2 A(¥,w). A theory
T of type Xy is interpretable in the theory T of type X if there exists a class
Ko of models of type £g such that Th(Ky) = T and Ky is interpretable in
Mods(T).

This whole aparatus was built up in the previous paragraphs to enable
us to formulate the following theorem from [7].

Theorem 3.4. (McKenzie and Valeriote, [7]) Let Ty be a theory on a finite
language which is intepretable in the theory I'. Then:
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(1) if Tg is finitely aziomatizable and decidable, then I' is decidable,

(2) if T'g is hereditarily undecidable, so 1s T
Now we can turn to the demonstration of our main result.

Theorem 3.5. The variety T has a hereditarily undecidable elementary
theory.

Proof. Denote the class of finite graphs (finite relational structures with an
irreflexive, symmetric binary relation) by FG. It is well known that Th(FG)
is a hereditarily undecidable theory. Hence, the theorem will be proved
if we show that F§G is interpretable in 7, because the latter implies that
o = Th(FG)is interpretable in Th(7) (7 is a variety,so 7 = Mod(Th(T)))
and then Theorem 3.4 gives the desired result.

First we define an intepretation scheme ¥ = (Un, Eg, R} for the language
with one binary predicate r in the language with one binary operation sym-
bol * for m = n = 1. Let Un(z,y) be the formula

say o A(zny),
Eq(z,,z2,y) be the formula
Iy =~ I3,

and finally, let R(z,,z3,y) denote

=(zy = z2) A (F2)(TFt)(~(zry) A ~(z=t) A
Ayxzxy AN yxtry Azi1+2R131 AN zoxl X2y A

((zr*xzam 21 N zxtm2) V (T1222 R 22 A 25t R 1))).

Now let G = (G, p) be a finite graph, G = {a1,a2,...,a,}. Define a
(2n + 1)-element tournament T = (T,-}, T = {by,...,bn,¢1,...,¢n,d}, in
the following way:

1) byd =b; forall 1 <1< n,

2) ¢;d=dforall 1 <1< n,

(1)
(2)
(3) cicy=c; forall 1 <7< j <,
(4)

4) bye; = b; for all 1 < ¢ < n,
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(5) bic; =¢; forall 1 <i# j<m,
b;, ifi<j, (a;i,a;) Epori>j, (a,a;)€p
{ b;, otherwise
(7Y 22 =z forallz € T,
(8) zy=yz forall z,y € T.

For this tournament we have
UnfT® = {z € T| T | Un(z,d)} = {z € T\ {d}| zd = z},

which obviously equals to {b1,bq,...,b,}. Since Eq¢(T:d is just the diagonal
relation on T, it follows that the universe of T(¥,d)is {{b1}, {b2},...,{bn}}
and that ({b;},{6;}) € rT(¥9 if and only if T = R(b;,b;,d). But the
formula R interprets in T for the given valuation as follows: b; # b; and
there exist z,¢ € T \ {d} such that dz = d, dt = d, b;z = b;, b;t = b; and
either b;b; = b;, 2t = z or bib; = b;, 2t = t. Clearly, b; # b; is equivalent
to 7 # j, while by (1) and (2), dz = d and dt = d fulfils for z,t # d if and
only if z and ¢ are one of the ¢,,’s, say, 2 = ¢x and t = ¢;. So, 2t = z means
that k& <, while zt = t means that £ > [. Summing up, T |= R(b;,b;,d) if
and only if 7 # j and one of the two cases, either b;b; = b;, bc;, = b; and
bjc; = b; for some k <1 or bb; = b;, bicp = b; and bje; = b; for some k > |
is true. By definition of the multiplication in T, b,c, = b, holds if and only
if p = ¢q. Applying this observation repeatedly above, we conclude that it
must be either b;b; = b; and ¢ < j or b;b; = b; and ¢ > j, which is by (6)
precisely the same as {(a;,a;) € p.

What we just proved is that the mapping £ : G — {{bi},...,{bn}}
defined by £(a;) = {b;} for all 1 < ¢ < n is an isomorphism of G and
T(V,d). Thus, FG is interpretable in 7. O
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