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Abstract

The main result of the paper is a canonical description of free ob-
jects in the variety U (M; N) of groupoids with the following axioms:

{z7*! oy =2y me M}U{z - y"*' = zy| n € N},

where M and N are sets of positive integers, such that M UN £ 0.
Applying the obtained description, corresponding characterization of
free subgroupoids of a U (M ; N)—free groupoid is given.
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1. Main results

Throughout the paper F = (F';-) denotes the absolutely free groupoid (i.e.
free groupoid in the variety of all groupoids) with a given basis B. Therefore,
F is injective! and B is the set of primes? in F'. Moreover, each subgroupoid
of F is free and there exist subgroupoids of F with infinite basis (see [1], [.1)

There exist (ilf—fli)z,%'—, k-th groupoid powers® z — z*. In this paper z* is
defined by '
111 =z, xk+1 = :ck:c,

and this is the meaning of the groupoid power in the axioms of U(M; N).
If&,7: F — F are two transformations on F, then we denote by F(£,7)

the groupoid (F,e) defined by z e y = £(z)n(y). We say that the pair £, 7 of
transformations on F'is compatible with F iff the following two conditions
are satisfied:
1) (Vb€ B) &(b) = b =1(b)
2) The least subset R of F' with the following property:
(1) BCR& (Vt,u€ R)(E(t) =t,n(u) = u = tu € R)
is a subgroupoid of F(¢, 7).

Here we introduce several notations.

The varieties U(M; D), U(B; N), U(M; N), where M # @ and N # 0, are
said to be left, right and two-sided, respectively. The variety U(M; Q) will
be also denoted by U;(M), and U(@; N) by U,(N). Further,

u(m11m27'”;nlan2a'“)

will be an abbreviation for U({my, m2,---};{n1,n2,---})

We state below the main results of the paper.

Theorem 1. If B is a nonempty set and M, N are sets of positive integers
such that M U N # 0, then there exists a pair (€,7m) of transformations on
F compatible with F with the following properties:

'A groupoid G is injective iff (Vz,y,0,vEG)(zy=vv=>r =u & y =)
2an element @ € G is prime in G iff a € G\ GG.
%see [3], I11.2, Ex.2, p.125 or (8], pp.39-40
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(i) The restrictions of £ and 7 on R are retractions of R.

(it) The corresponding groupoid R is a U(M; N)—free groupoid with a uni-
que basis B, B being the set of primes in R.

We say that R is the U(M; N)-canonical groupoid with the basis B.

Theorem 2. The class of free objects in a variety U(M; N) is hereditary
iff
(M#0Q, N=0)or(M =0, 1€ N).

Theorem 3. Let H be a U(M; N)-free groupoid with the basis B. If B con-
tains at least two distinct elements orU(M; N) ¢ {U4(1),U.(1)}U{U(m;1):
m > 1}, then there ezists U(M; N )-free subgroupoid of H with infinite basis.

In Section 2 we state some preliminary results, and in Section i 4+ 2 we
give the proof of Theorem i. Moreover, in Section 4 we describe the family
of free subgroupoids of a (M ; N )—free groupoid in the case when the class
of U(M; N )-free groupoids is not hereditary.

2. Preliminaries

Here we state some properties of the groupoid F and one of the main results
.of [6]. Let z — |z| be the homomorphism of F into the additive groupoid of
positive integers which extends the mapping B — {1}. In other words, we
have:

(Vb€ B) |b| =1,
(2)
(Vz,y € F) [zy| = [] + [y].
(We say that |t| is the length of t in F.)

Below we assume that m is a given positive integer, p, ¢ arbitrary non-
negative integers, and i,J,k, - arbitrary positive integers. We define two
kinds of groupoid powers z — z®), 21— z{P) as follows:

(3) 20 = 240 = g g+ = (gL, potl) — g G Py

where the right-hand side of the last equation has the following meaning:



134 G. Cupona, N. Celakoski and B. Janeva

(4) zy0=2z, zyp+1=(z yp)y.

By induction on the length of elements of F' we obtain that, for any
t,u€ F, p,g >0, 1,7 > 1, the following relations hold:

P
(5) ] = el [6®)] = (m+ 1P|t 169 = o S m;
9=0
(6) ti+1=Uj+1:>t=u, 1= J;
(t(P))(Q) = tpta),
(8) 1<i<m= (t7F £uPH) &t g # 4la1),
(9) ) = letl) o ¢ = u, p=gq.

One of the main results in [6] is the following

Theorem 2.1. If M and N are nonempty sets of positive integers, then:
(4) U(M;0) = U(ged(M); 0);*
(i) U N) =UO; (N)); °
(i55) U(M; N) = U(ged(M); ged(M U N)).
Considering Theorem 2.1 we shall examine three types of U(M; N) va-
rieties with corresponding canonical sets of axioms, i.e. U(@;5),U(m;@)
and U(m;n) which will be denoted as U,(5),Ui(m) and U(m;n), respec-

tively. Here S is the additive groupoid of positive integers generated by N,
m = ged(M) and n = ged(M U N )in the case when both M # @ and N # 0.

fgcd(M) denotes the greatest common divisor of M.
3{N) is the subgroupoid of the additive groupoid of positive integers generated by N.
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We shall also use the following relations:®

(10) U(m) 2Py = zy;

(11) U(m) = 2P = 2P

(12) Uy(m) = 2P = g
(13) U(5) = (aH1YHL = it
(14) . U(knyn) | (zm)kndl = gintl

3. U(M; N)—canonical groupoids

We assume below that m is a positive integer, and S is an additive groupoid
of positive integers.

Define two transformations o, 3 : F' — F, as follows:

t, if u=tPt) p>0
u, otherwise

(15) a(w = {

(16) ﬂ(u)z{ t, if u=t+lieS

u, otherwise

By (9) and (6), @ and S are well defined.

Assume now that M and N are sets of positive integers such that M U
N # (. Using « and 3, we define two transformations £, n: F — F for each
of the following cases U;, U,,U:

U: TM#£0, N=0, m=gcd(M), then £ = a and n = 1F;
U : TM=0, N#0, S={(N),then { = 1p and n = S;

U:TEM#0, N#0, m=ged(M), n=ged(MUN), §={in:i>1},
then £ = @ and = .

8y = 11 = 12 means: the equation ™ = 73 is true in the variety V.
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Clearly, in each of the cases: Uj, U,, U the condition 1) of Section 1 (for
the pair (£,7) to be compatible with F) is satisfied. Moreover, according
to the condition 2), the corresponding subset R of F' is defined as follows:
B CR, and

U: (WweF)(vweR < v,w€R & a(v)=1)
(17) U, : (Vw,we F)(vw e R < v,w € R & B(w) = w)
U: (VWweF) vweR < v,weR& a(v)=v & B(w) = w).

From (15), (16) and (17), we obtain the following relations:

U: v=uP = (veR <= uveR&a(u)=1);
(18) U, : v=ut= (e R <= u€R&Bu)=u);
U: v=rulrth = (veR — uGR,p:O&a(u):u);
i>Lv=u""= (vER < u€eR,i<k &) =u),

where kn = m.
From (18), we obtain:
Proposition 3.1. The restrictions of £ and n on R are retractions of R.

From the definition of the groupoid F(¢, ) and Proposition 3.1 it follows:

Proposition 3.2. R = (R,e) is a subgroupoid of F(&,7), and B is the least
generating subset of R.

From (18), the definitions of the pair (£, 7) and Proposition 3.1 it follows
that for each u € R, there exists a unique t € R and a unique:
p > 0, in the case U;; 1 € S U {0}, in the case Uy,; s: 0 < s <k, in the case
U, such that:
(19) U:u=tP o) =t; U :u=t"*1 B() =t

U:u=t"t1 B(t) =t
If v,w € R, then v e w can be expressed more explicitely as follows:
U vew=tw, where v = t{#, p > 0,0a(t) = ¢;

(20) U : vew=vu, where w=u't1,i€ §U{0},0(u) = y;
vu, ifa(v)=v, w=u"11<i<k
tw, ifv=t"" Gw)=w
tu, fo=t"t w=u"11<i<k
vw, if a(v) =v,8(w) = w.

U: vew =
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Now we shall show the following;:
Proposition 3.3. R € U(M; N).

Proof. If w e R,7 > 1, then we denote by ul the j—th power of v in R, 1.e.
(21) up=u, wt! = (u)eu

(Note that, if w € R, then ul €'R, but it can happen that v/ € F'\ R.)

Assuming (19), by (20) we obtain the equalities (22) in the corresponding
cases U;, U, and U.

u, fj=1
U : ul = tuj—-1, if2<5<m
tur—=1, ifj=gm+r,2<r<m+1
(22) U, : wl =6+, if > 1;
u, ifj=1
U: ul={ s, ifs>1,1<j<(k—s)n+1.

prmlb-onif s > 1,(k—s)n+2<j<kn+1

Therefore:
U : um™tl = tletl),
U, : witt = uititl for each j € S;
(23)
u;zmwlz{te“mﬁ’ ifivs<hk
. tlirs=kn+l  if 4 s>k 1<4 < k.

If n(u) =t # v (ie. w=1"1, s> 1) and 7 = k, then in the last case we

obtain
u™t = .

From (20) and (23) we obtain that, for any v,w € R, the following
equations hold:

U : (v ew =vew;

U, : ve(wit!) = vew,foreach i € 5;
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U: (PN ew=vew=1ve(wltl).

Therefore, we have R € Ui(m), R € U,(S), R € U(kn;n) in the cases:
UM;N) = U(m), UUM;N) = U (S), U(M;N) = U(kn;n), respectively.
O

The following statement will complete the proof of Theorem 1.

Proposition 3.4. Let G = (G;:) E U(M;N). If A: B — G is a mapping,
and ¢ : F — G the homomorphism which eztends A, then the restriction of
@ on R is a homomorphism from R into G.

Proof. 1t suffices to show the equality p(vew) = ¢(v)p(w), for each v,w € R
such that v e w # vw.

Then, in the case U(M; N) = U;(m), we have v = tP*1) for a unique
pair (t,p), wheret € R,p > 0,a(t) = t, and vew = tw. Therefore, we have:

e(v e w) = p(tw) = (t)p(w) = (t)PTep(w).
Then, by (11) we have:

()P p(w) = ()P e(w) = e(tPH1)p(w) = p(v)e(w).

In the case U(M; N) = U,(S) we have: w = t+!, for a unique pair (¢, 1),
where t € R,3(t) = t,i € S. Therefore,

p(vew) = p(vt) = p(v)p(t) = P(V)p(t) ! = (v)e(t*!) = (v)p(w).

In a similar way, we obtain that ¢(v e w) = ¢(v)p(w), in the case U.
O

By Propositions 3.2-3.4, R is a U{M; N )-free groupoid with the unique
basis B, i.e. we have completed the proof of Theorem 1. v

We say that the formula: 2™*! .y = zy (z - y"t! = zy) is a left (a right)
equation; a left or a right equation is called equation. It is well known that an
equation holds in a variety U(M; N) iff it is satisfied in each U(M; N)free
groupoid. Therefore, the following statement describes the set of equations
in a variety U(M; N).

Proposition 3.5. Let H be a free groupoid in the variety U(M; N). Then
the following statements hold.
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(5) If M #0, N =0, gcd(M) = m, then a left equation z™tly = zy
holds in H iff m|n; no right equation holds in H.

(i) If M =0, N # 0, then the right equation xy’t! = zy holds in H iff
J € {N); no left equation holds in H.

(1) If M #0, N #0, ged(M) =m, n=ged(MUN), then 2ty = zy
iff m|i and zy?t! = zy iff n|j hold in H.

Proof. Let R be a U(M; N)-canonical groupoid with the basis B, and a,b €
B.
‘ Then:

(i) f M #0, N =0, gcd(M) = m, then
(ait1) e b = ab = a e b iff m|i;
aebitl £ gb=aebforeachj> 1.

() UM =0, N#0and S = (N), then:
atleb=atlb£ab=aeb;

and,if j > 1,thenae(alt)=ab=aebiff j € S.

(i) UM #£Q, N#£0, gcd(M)=m, n=gcd(MUN), 1,7 > 1, then:
(ait!) e b = ab = a e b iff m|i,

ao(b£+l)=ab=aobiﬁ'n|j. O

Having in mind the definitions of the transformations &, 7 in each of the
cases Uy(m),U-(S) and U(kn;n), as a corollary of Theorem 1 the following
statement can also be obtained.

Proposition 3.6. If H is a U(M; N)-free groupoid with the basis B, then
there exist retractions v and 6 of H with the following properties:
(i) B is the set of primes in H, and B C imy N imé;
(If z € imy Nimé, then we say that z is a base in H)
() (Vo,y € H)zy = v(2)8(y);

((7(2),6(y)) is the pair of divisors of zy in H; i.e. y(z) is the left and
8(y) the right divisor of zy.)



140 G. Cupona, N. Celakoski and B. Janeva

(vii) There exists a mapping = — |z| from H into the set of positive integers
with the following properties:

lzyl = |v(z)| + [6(y)l,
V(@) #Fz = |[y(2) <z §(z) #z = |§(z)| < |2,

forany z,y€ H.

Proof. If R is the U(M; N)—canonical groupoid with the basis B, then there
exists a unique isomorphism ¢ : R — H such that ¢(b) = b, for each b € B.
Defining ¥,6 : H — H by: v(z) = £(¢~!(z)), é(z) = n(¢~1(z)), we obtain
two retractions v, 8 of H such that (¢)- (4if) hold, where the length of z € H
is defined by |z| = |¢~1(z)]. O

In each of the cases U;(m),U,(S),U(kn;n), the results of Proposition 3.6
can be stated more explicitely as follows.

3.6. Uy(m).

(i) y=a,6 = 1x;

(77) y € H is a base in H iff y € im; for each z € H there exists a unique
y = bs(z) (the base of z) and unique p = exp(z) > 0 (the ezponent of
z) such that z = y{).

(#17) bs(z) is the left (and y the right) divisor of zy.

(i) If b is a base in H, and 1 < ¢ < m, p > 0, then ¢ = b b{P)i is also a
base in H; b b(p)i — 1 is the left and b(®) the right divisor of ¢; in the
same case b b(P)m — 1 is the left and 6(®) the right divisor of p(r+1),

(v) Hz € H,1<i<j<m+1,thenzi=2ai=i=j.

3.6. Up(N).

(Z) 7:1H’6=ﬁ;

(1) yis a base in H iff y € imé; for each z € H there exists a unique base
y, and a unique ¢ € {0} U (N), such that z = y9t!.
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(#it) The left divisor of zy is = and its right divisor is bs(y). Thus,
Ty = uv < ¢ =u, bs(y) = bs(v).

3.6. U(kn;n).

(i) « is a base in H iff z™*! # z; for each z € H there exists a unique y

(the base of ) and a unique i € {0,1,---,k} (the ezponent of z) such

that z = y*"*1; z is a left base in H iff i # k, where 7 is the exponent

of z.

(1) For any @ € H, §(z) is the base of z, and

z, if z is the left base
¥(z) = m+1

y, if y is the base of z, and z =1y

_fy, ifz=y" 0<i<k,
§(z) = { z, otherwise.

(#11) y(z) is the left and §(y) the right divisor of zy.

4. Free subgroupoids of U(M; N)—free groupoids

We shall describe the set of pairs (M, N) of sets of positive integers such
that the variety /(M ; N) is hereditary, i.e. we shall prove Theorem 2.

Proposition 4.1. For any m > 1, the class of free objects in the variety
Uy(m) is hereditary.

Proof. Let Q be a subgroupoid of a U;(m)-free groupoid H. We have to
show that the set P of prime elements of ¢) is nonempty, and that Q is
Uy(m)-free with the basis P. The proof will be given in several steps, where
induction on |z|, for € @, will be used.

1) Ifa € @\ P and c is the right divisor of ¢ in H, then ¢ € Q.

2) Let a = b(P) € @, where b is the base of a in H. If g is the least
non-negative integer such that b’ = (9 € @, then we say that ¥ is the base
of a in Q. Then, if ¢ > 1, € P.

By 1) and 2) we obtain:

3) P # 0, and P is the least generating subset of Q.
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4) If ¢,d € @, and b’ is the base of ¢ in Q, then we say that (b',d)
is the pair of divisors of ¢d in Q. Then: |d| < |ed|, and: b is prime or
|ed| = 16| + |d]-

5) Assume that G € Uj(m) and A : P — G is a given mapping. There is
a (unique) homomorphism ¢ : @ — G such that A = ¢p is the restriction
of o on P. Namely, if z € @) is such that |z] = min{|y|: y € Q}, then y € P,
and thus ¢(z) = A(z) is well defined. Assume that for each z € @, such
that |z| < i, ¢(z) € G is well defined and, moreover, if (y, z) is the pair of
divisors of z in Q, then ¢(y), ¢(2) are well defined, and ¢(z) = ¢(y)p(z).

Let v € @ \ P be such that |v| =i+ 1, and (¢, u) be the pair of divisors
of vin Q. Then ¢(t) and ¢(u) are well defined, and thus we can define ¢(v)
by ¢(v) = ¢(t)p(u). Then ¢ : Q — G is a homomorphism which extends
A, O

Proposition 4.2. The class of free objects in the variety U, (1) is hereditary.

Proof. This statement is one of the main results of [4], and it is also a
corollary of Proposition 4.1. Namely, let G = (G, ") be a given groupoid,
and the groupoid G°P = (G,o0) be defined by z o y = yz. Then, G €
U (1) <= G°P e U(1), and H is U,(1)free iff HP is U;(1)—free. O

Proposition 4.3. If N is a nonempty set of positive integers and 1 ¢ N,
then the class of free objects in the variety U,(N) is not hereditary.

Proof. Let n = min(N), and let H be a U, (N )-free groupoid with the basis
B. Consider the subgroupoid Q generated by {6",6"t!}, where b € B. Then
b™ is the unique prime in Q, and {b™} does not generate Q, which implies
that Q is not free 7. O

Proposition 4.4. If M # O, N # 0, then the class of free objects in the
variety U(M; N) is not hereditary.

Proof. Let m = ged(M),n = gcd(M U N) and let H be a U(M; N)-free
groupoid with the basis B. If b € B, and Q is the subgroupoid generated by
{671}, then the set of primes in Q is empty. (Namely, (b"t1)m+! = pnt1,
which implies that 6"t! is not a prime in Q.) O

Theorem 2 is a corollary of Propositions 4.1-4.4.

"Here, and further on in Section 4, if H is 4 (M; N)-free groupoid, and Q is a sub-
groupoid of H, we will write ”Q is free” instead of "Q is U(M; N)-free”.
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Proposition 4.5. Let H be a U(M; N)-free groupoid and Q a subgroupoid
of H, such that:
(24) (Ve e H)(z € Q = bs(z) € Q).

Then Q s free.

Proof. From (24) it follows that if @ € Q@ and (¢,d) is the pair of divisors
of a in H, then ¢,d € @, and moreover the following equation holds:

la| = [e[ + |d].

This implies that the set P of primes in Q is nonempty and generates Q.
In the same way as 5) in the proof of Proposition 4.1, one can show that Q
is free with the basis P. 0O

In the next three statements we describe free subgroupoids of U(M; N )-
free groupoids when the class of U(M; N )—free groupoids is not hereditary.

Proposition 4.6. LetH be ald(M; N )-free groupoid, where M # @, N # 0,
and Q be a subgroupoid of H. If Q does not satisfy (24), then Q is not free.

Proof. Let m = ged(M),n = ged(M U N),m = kn, and let ¢ € Q be
such that b ¢ @, where b is the base of @ in H. Then, there exists an
i€ {1,2,---,k}, such that a = 4"+, Then:

a2 = bzn+2, ad = bm+3, . a(k—z)n+l — phntl bm+1,
a(k—i)+2 — b2, a(k—i)n+3 = b3, .. .,a(k—z)n+n = b
a(k—z+1)n+l — bn+1’ L ,a(k—z+2)n+l - b?n+1, L. ,akn — bm’ akn+l —a

are elements of Q. Thus, b%,5%,---,b6™+! € Q, but b ¢ Q. From the equality
(pmtlym+l = pm+l it follows that b™*! is not a base, and if Q were free, a
base ¢in Q and j € {1,2,---,k} would exist, such that b™*! = ¢»*! which
would imply i = k,c = b € @), i.e. we would obtain a contradiction. O

Proposition 4.7. Let Q be a subgroupoid of a U,(N )~free groupoid, where
n=min(N) € N, and let, for z € Q, j(z) be defined as follows:

(25) j(z) = min{s : (bs(z))*** € Q,s > 0}.

Then, Q is free tff
(26) (Vz € Q) nlj(z).
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Proof. Assuming the condition (26), in the same way as in the proof of
Proposition 4.1, one can show that Q is free.

Thus, we can assume that there exists an a € (), such that n is not a
divisor of j = j(a). Then, b**! is a prime in Q, where b = bs(a) is the base
of a; moreover, then 5t € Q, for any v > 1. Denote by T the subgroupoid
of Q generated by the set P of primes in Q. Thus: 7" = [J{P, : v > 1},
where Py = P, P,4; = P, U{zy: 2,y € P,}. Then, if ¢ > 1 is such that
in > j, bt € Q \ T, and therefore the set P of primes in Q does not
generate Q. 0O '

Proposition 4.8. Let H be a U,(N)—-free groupoid, where gcd(N)¢ N. A
subgroupoid Q of H s free iff Q satisfies the condition (24).

Proof. Denote by S the additive groupoid of positive integers generated by
N. Then n = ged(§) = ged(N) ¢ S. If Q satisfies the condition (24), then,
by Proposition 4.5, Q is U,.(N )—free.

Assume that there exists an a € @), such that b ¢ @), where b is the base
of a in H. Therefore, there exists an s € S, such that a = b%*1. Let
(27) i =min{v: 0" € Q,v > 1}.

Then i > 1, and bt € Q; moreover b'*! is prime in Q. If i ¢ S, then one
can show that Q is not U, (N )—free in the same way as in Proposition 4.7,
in the case ”n is not a divisor of j”.

Thus we can assume that 7 € §. Then bt € @, for any v > 1.

Let s be the least element of § such that s+vn € S, for any v > 1. (See
[6, Lemma 1.6.ii} or [7].) Then j=s+(i—n)€ S,but j—i=s—-n¢SG.
Let k be the least element of S such that : < £ < j, and j —k € SU {0}.
Then: ¢+ 7 = k+ i+ a, where « € S U {0}.
Assume that Q is free. Then b**! and b%*! are different bases in Q, but
(bi+1)j+1 — bi+j+l — bi+k+a+l — (bk+1 )i+a+1,

which is impossible. 0O
5. Ranks of free subgroupoids of /(M ; N )-free gro-
upoids

We shall first consider (M ; N)-free groupoids with one element basis B =
{b} in the cases U;(1),U,(1) and U(1;1) and then prove Theorem 3.
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Proposition 5.1. If Z% is the set of positive integers, then the groupoid
(Z*,0) defined by i e j = i+ 1 is Ui(1)-free groupoid with the basis {1}. If
Q is a subgroupoid of (Z%,s) and m is the least element of Q, then Q is a
Ui(1)-free groupoid with the basis {m}. The groupoid (Zt,#)° is U,(1)-free
with the basis {1}.

Proposition 5.2. The groupoid H = ({1,2,---,m,m + 1}, e), defined by

iei= i+1, fori<m
7= 2, fori=m+1

is U(1; 1)~free groupoid with the basis {1}. If Q is a proper subgroupoid of
H, then Q is not U(1; 1)—free.

Proof. @ = {2,3,---,m,m+ 1} is the unique proper subgroupoid in H. The
set of primes in Q is empty, and thus, Q is not U(1;1)-free. O

Proposition 5.3. Let H be a U{M; N)—free groupoid with the basis {b},
where
(28) U(M;N) ¢ {U(1),U (1)} U {UU(m;1) : m > 1},

and let A = {a;:i> 1} C H be defined as follows:
(29) ay = b2, a;41 = ba;.

If Q is a subgroupoid of H generated by A, then Q isU(M; N)—free with the
basis A, and a; = a; => 1= j.

Proof. Assuming that H = R is the U/(M; N)-canonical groupoid with the
basis {b}, we obtain that a; = a; = i = j,i.e. A is an infinite subset of H.
Moreover, for each ¢ > 1, b is the left divisor for a;, and b ¢ Q. This implies
that a; is prime in Q.

It remains to show that Q is (M ; N)—free with the basis A.

If U(M; N) = U m), by Proposition 4.1 we obtain.that Q is U(M; N)-
free with the basis A.

Assume now that U(M; N) = U.(S),1 ¢ S = (N), and that d = ¢'*! ¢
Q, where i € §, and ¢ is a base in H. Then d ¢ A, and therefore ¢' € Q.

Continuing in such a way, we would obtain ¢ € @. Thus by Proposition 4.5,
(24) is satisfied, and thus Q is U,(5)~free with the basis A.



146 G. Cupona, N. Celakoski and B. Janeva

Finally, let U(M;N) = U(kn;n),n > 2. The fact that A generates Q
implies:

Q= J{4i:i>1}, where A; = A, Aij1 = AiU{ay: 7,5 € A}

Assume that d = ¢**t1 € @, where 1 < ¢ < k, and ¢ is a base in H. Let s
be the least positive integer, such that d € As41 \ As. Such an s exists as
d ¢ A. Thus, there exist d’,d” € A,, such that ¢! = ¢¢ = d = d'd”, and
therefore ¢ = d’, d’ = ¢/™t! for some 0 < j < k. So, ¢i™ € Q \ A; then, by
the same argument, ¢i*~1 € @, etc., and by an obvious induction we obtain
that ¢ € ¢. Therefore, Q is free. O

We note that in the case U(M; N) = U;(m), Q satisfies the relation (24).
Also:

U(M;N)=U(1)=> A = {b?}, and Q is Uj(1)-Tree with the basis A;
UM;N)=U(1)=> Q = A, and Q is U,(1)-free with the basis {b%};

UM;N)=U(m;1) = A= {b?},Q = {b%,b%,--.,™*1}, and Q is not
U(m; 1)—free.

The proof of the following statement is the same as the proof of Propo-
sition 5.3, and moreover, the assumption (28) is not necessary.

Proposition 5.4. Let H be a U(M; N)—free groupoid with the basis {a,b},
a#b, and let C = {¢; : 1 > 1} be defined as follows:

(30) e; = ab, ¢j41 = ac;.

Then ¢; = ¢; = 1 = j, and the subgroupoid Q of H generated by C is
U(M; N)—free with the basis C'.

This completes the proof of Theorem 3.
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