Vol. 29, No. 2 (1999), 131-147

PROC. VIII INT. CONF.

"ALGEBRA & LOGIC" (NOVI SAD, 1998)

FREE GROUPOIDS WITH AXIOMS OF THE FORM $x^{m+1}y = xy$ AND/OR $xy^{n+1} = xy$

Gorgi Čupona

Macedonian Academy of Sciences and Arts 91000 Skopje, Macedonia

Naum Celakoski

Faculty of Mechanical Engineering, University of Skopje 91000 Skopje, Macedonia

Biljana Janeva

Institute of Informatics, Faculty of Sciences and Mathematics University of Skopje, 91000 Skopje, Macedonia

Abstract

The main result of the paper is a canonical description of free objects in the variety $\mathcal{U}(M; N)$ of groupoids with the following axioms:

$$\{x^{m+1} \cdot y = xy | m \in M\} \cup \{x \cdot y^{n+1} = xy | n \in N\},$$

where M and N are sets of positive integers, such that $M \cup N \neq \emptyset$. Applying the obtained description, corresponding characterization of free subgroupoids of a $\mathcal{U}(M;N)$ -free groupoid is given.

AMS Math. Subject Classification (1991): 20N02, 08A30, 08B20 Key words and phrases: groupoid, variety, free groupoid

1. Main results

Throughout the paper $\mathbf{F} = (F; \cdot)$ denotes the absolutely free groupoid (i.e. free groupoid in the variety of all groupoids) with a given basis B. Therefore, \mathbf{F} is injective¹ and B is the set of primes² in F. Moreover, each subgroupoid of \mathbf{F} is free and there exist subgroupoids of \mathbf{F} with infinite basis (see [1], I.1)

There exist $\frac{(2k-2)!}{(k-1)!k!}$ k-th groupoid powers³ $x \mapsto x^k$. In this paper x^k is defined by

 $x^1 = x, \quad x^{k+1} = x^k x,$

and this is the meaning of the groupoid power in the axioms of $\mathcal{U}(M; N)$.

If $\xi, \eta : F \to F$ are two transformations on F, then we denote by $\mathbf{F}(\xi, \eta)$ the groupoid (F, \bullet) defined by $x \bullet y = \xi(x)\eta(y)$. We say that the pair ξ, η of transformations on F is *compatible* with \mathbf{F} iff the following two conditions are satisfied:

- 1) $(\forall b \in B) \ \xi(b) = b = \eta(b)$
- 2) The least subset R of F with the following property:

(1)
$$B \subseteq R \& (\forall t, u \in R) (\xi(t) = t, \eta(u) = u \Rightarrow tu \in R)$$

is a subgroupoid of $F(\xi, \eta)$.

Here we introduce several notations.

The varieties $\mathcal{U}(M;\emptyset)$, $\mathcal{U}(\emptyset;N)$, $\mathcal{U}(M;N)$, where $M \neq \emptyset$ and $N \neq \emptyset$, are said to be *left*, *right* and *two-sided*, respectively. The variety $\mathcal{U}(M;\emptyset)$ will be also denoted by $\mathcal{U}_l(M)$, and $\mathcal{U}(\emptyset;N)$ by $\mathcal{U}_r(N)$. Further,

$$\mathcal{U}(m_1, m_2, \cdots; n_1, n_2, \cdots)$$

will be an abbreviation for $\mathcal{U}(\{m_1, m_2, \cdots\}; \{n_1, n_2, \cdots\})$

We state below the main results of the paper.

Theorem 1. If B is a nonempty set and M, N are sets of positive integers such that $M \cup N \neq \emptyset$, then there exists a pair (ξ, η) of transformations on F compatible with F with the following properties:

A groupoid G is injective iff $(\forall x, y, u, v \in G)(xy = uv \Rightarrow x = u \& y = v)$

²an element $a \in G$ is prime in G iff $a \in G \setminus GG$.

³see [3], III.2, Ex.2, p.125 or [8], pp.39-40

- (i) The restrictions of ξ and η on R are retractions of R.
- (ii) The corresponding groupoid \mathbf{R} is a $\mathcal{U}(M; N)$ -free groupoid with a unique basis B, B being the set of primes in \mathbf{R} .

We say that **R** is the U(M; N)-canonical groupoid with the basis B.

Theorem 2. The class of free objects in a variety U(M; N) is hereditary iff

$$(M \neq \emptyset, N = \emptyset)$$
 or $(M = \emptyset, 1 \in N)$.

Theorem 3. Let **H** be a $\mathcal{U}(M; N)$ -free groupoid with the basis B. If B contains at least two distinct elements or $\mathcal{U}(M; N) \notin \{\mathcal{U}_l(1), \mathcal{U}_r(1)\} \cup \{\mathcal{U}(m; 1) : m \geq 1\}$, then there exists $\mathcal{U}(M; N)$ -free subgroupoid of **H** with infinite basis.

In Section 2 we state some preliminary results, and in Section i+2 we give the proof of Theorem i. Moreover, in Section 4 we describe the family of free subgroupoids of a $\mathcal{U}(M;N)$ -free groupoid in the case when the class of $\mathcal{U}(M;N)$ -free groupoids is not hereditary.

2. Preliminaries

Here we state some properties of the groupoid \mathbf{F} and one of the main results of [6]. Let $x \mapsto |x|$ be the homomorphism of \mathbf{F} into the additive groupoid of positive integers which extends the mapping $B \to \{1\}$. In other words, we have:

$$(\forall b \in B) |b| = 1,$$

$$(2)$$

$$(\forall x, y \in F) |xy| = |x| + |y|.$$

(We say that |t| is the length of t in \mathbf{F} .)

Below we assume that m is a given positive integer, p, q arbitrary non-negative integers, and i, j, k, \cdots arbitrary positive integers. We define two kinds of groupoid powers $x \mapsto x^{(p)}$, $x \mapsto x^{(p)}$ as follows:

(3)
$$x^{(0)} = x^{(0)} = x, \ x^{(p+1)} = (x^{(p)})^{m+1}; \ x^{(p+1)} = x \ \underline{x^{(p)}m},$$

where the right-hand side of the last equation has the following meaning:

(4)
$$x y0 = x, x yp + 1 = (x yp)y.$$

By induction on the length of elements of F we obtain that, for any $t, u \in F$, $p, q \ge 0$, $i, j \ge 1$, the following relations hold:

(5)
$$|t^{i}| = i|t|; |t^{(p)}| = (m+1)^{p}|t|; |t^{(p)}| = |t| \sum_{q=0}^{p} m^{q};$$

(6)
$$t^{i+1} = u^{j+1} \Rightarrow t = u, \ i = j;$$

(7)
$$t^{(p)} = u^{(p+q)} \iff t = u^{(q)};$$
$$(t^{(p)})^{(q)} = t^{(p+q)};$$

(8)
$$1 \le i < m \Rightarrow (t^{i+1} \ne u^{(p+1)} \& t \underline{t^{\langle p \rangle}} i \ne u^{\langle q+1 \rangle});$$

(9)
$$t^{(p+1)} = u^{(q+1)} \iff t = u, \ p = q.$$

One of the main results in [6] is the following

Theorem 2.1. If M and N are nonempty sets of positive integers, then:

(i)
$$\mathcal{U}(M; \emptyset) = \mathcal{U}(\gcd(M); \emptyset);^4$$

(ii)
$$\mathcal{U}(\emptyset; N) = \mathcal{U}(\emptyset; \langle N \rangle); {}^{5}$$

(iii)
$$\mathcal{U}(M; N) = \mathcal{U}(\gcd(M); \gcd(M \cup N)).$$

Considering Theorem 2.1 we shall examine three types of $\mathcal{U}(M;N)$ varieties with corresponding canonical sets of axioms, i.e. $\mathcal{U}(\emptyset;S),\mathcal{U}(m;\emptyset)$ and $\mathcal{U}(m;n)$ which will be denoted as $\mathcal{U}_r(S),\mathcal{U}_l(m)$ and $\mathcal{U}(m;n)$, respectively. Here S is the additive groupoid of positive integers generated by N, $m = \gcd(M)$ and $n = \gcd(M \cup N)$ in the case when both $M \neq \emptyset$ and $N \neq \emptyset$.

 $^{^{4}}$ gcd(M) denotes the greatest common divisor of M.

 $^{{}^{5}\}langle N \rangle$ is the subgroupoid of the additive groupoid of positive integers generated by N.

We shall also use the following relations:⁶

(10)
$$\mathcal{U}_l(m) \models x^{(p)}y = xy;$$

(11)
$$\mathcal{U}_l(m) \models x^{(p)} = x^{\langle p \rangle};$$

(12)
$$\mathcal{U}_l(m) \models x^{pm+i+1} = x^{i+1};$$

(13)
$$\mathcal{U}_r(i) \models (x^{i+1})^{j+1} = x^{i+j+1};$$

(14)
$$\mathcal{U}(kn;n) \models (x^{in+1})^{kn+1} = x^{in+1}.$$

3. U(M; N)-canonical groupoids

We assume below that m is a positive integer, and S is an additive groupoid of positive integers.

Define two transformations $\alpha, \beta: F \to F$, as follows:

(15)
$$\alpha(u) = \begin{cases} t, & \text{if } u = t^{\langle p+1 \rangle}, p \ge 0 \\ u, & \text{otherwise} \end{cases}$$

(16)
$$\beta(u) = \begin{cases} t, & \text{if } u = t^{i+1}, i \in S \\ u, & \text{otherwise} \end{cases}$$

By (9) and (6), α and β are well defined.

Assume now that M and N are sets of positive integers such that $M \cup N \neq \emptyset$. Using α and β , we define two transformations ξ , $\eta: F \to F$ for each of the following cases $\mathcal{U}_l, \mathcal{U}_r, \mathcal{U}$:

$$\mathcal{U}_l$$
: If $M \neq \emptyset$, $N = \emptyset$, $m = \gcd(M)$, then $\xi = \alpha$ and $\eta = 1_F$;

$$\mathcal{U}_r$$
: If $M = \emptyset$, $N \neq \emptyset$, $S = \langle N \rangle$, then $\xi = 1_F$ and $\eta = \beta$;

 $\mathcal{U}: \text{ If } M \neq \emptyset, \ N \neq \emptyset, \ m = \gcd(M), \ n = \gcd(M \cup N), \ S = \{in: i \geq 1\}, \\ \text{ then } \xi = \alpha \text{ and } \eta = \beta.$

 $^{^6\}mathcal{V} \models \tau_1 = \tau_2$ means: the equation $\tau_1 = \tau_2$ is true in the variety \mathcal{V} .

Clearly, in each of the cases: \mathcal{U}_l , \mathcal{U}_r , \mathcal{U} the condition 1) of Section 1 (for the pair (ξ, η) to be compatible with \mathbf{F}) is satisfied. Moreover, according to the condition 2), the corresponding subset R of F is defined as follows: $B \subset R$, and

$$\mathcal{U}_l: (\forall v, w \in F)(vw \in R \iff v, w \in R \& \alpha(v) = v)$$

(17)
$$\mathcal{U}_r: (\forall v, w \in F) (vw \in R \iff v, w \in R \& \beta(w) = w)$$

$$\mathcal{U}: \quad (\forall v, w \in F) \big(vw \in R \iff v, w \in R \& \alpha(v) = v \& \beta(w) = w \big).$$

From (15), (16) and (17), we obtain the following relations:

$$U_l: v = u^{(p+1)} \Rightarrow (v \in R \iff u \in R \& \alpha(u) = u);$$

(18)
$$\mathcal{U}_r: v = u^{i+1} \Rightarrow (v \in R \iff u \in R \& \beta(u) = u);$$

$$\label{eq:continuous} \begin{array}{ll} \mathcal{U}: & v = u^{\langle p+1 \rangle} \Rightarrow \left(v \in R \iff u \in R, p = 0 \ \& \ \alpha(u) = u \right); \\ & i \geq 1, v = u^{in+1} \Rightarrow \left(v \in R \iff u \in R, i \leq k \ \& \beta(u) = u \right), \end{array}$$

where kn = m.

From (18), we obtain:

Proposition 3.1. The restrictions of ξ and η on R are retractions of R.

From the definition of the groupoid $\mathbf{F}(\xi, \eta)$ and Proposition 3.1 it follows:

Proposition 3.2. $\mathbf{R} = (R, \bullet)$ is a subgroupoid of $\mathbf{F}(\xi, \eta)$, and B is the least generating subset of R.

From (18), the definitions of the pair (ξ, η) and Proposition 3.1 it follows that for each $u \in R$, there exists a unique $t \in R$ and a unique: $p \geq 0$, in the case \mathcal{U}_l ; $i \in S \cup \{0\}$, in the case \mathcal{U}_r ; $s: 0 \leq s \leq k$, in the case \mathcal{U} , such that:

(19)
$$\mathcal{U}_{l}: u = t^{\langle p \rangle}, \ \alpha(t) = t; \ \mathcal{U}_{r}: u = t^{i+1}, \ \beta(t) = t;$$
$$\mathcal{U}: u = t^{sn+1}, \ \beta(t) = t.$$

If $v, w \in R$, then $v \cdot w$ can be expressed more explicitly as follows:

$$\mathcal{U}_l$$
: $v \bullet w = tw$, where $v = t^{(p)}, p \ge 0, \alpha(t) = t$;

(20)
$$\mathcal{U}_r: v \bullet w = vu$$
, where $w = u^{i+1}, i \in S \cup \{0\}, \beta(u) = u$;

$$\mathcal{U}: \quad v \bullet w = \left\{ \begin{array}{ll} vu, & \text{if } \alpha(v) = v, \ w = u^{in+1}, 1 \leq i \leq k \\ tw, & \text{if } v = t^{m+1}, \beta(w) = w \\ tu, & \text{if } v = t^{m+1}, w = u^{in+1}, 1 \leq i \leq k \\ vw, & \text{if } \alpha(v) = v, \beta(w) = w. \end{array} \right.$$

Now we shall show the following:

Proposition 3.3. $\mathbf{R} \in \mathcal{U}(M; N)$.

Proof. If $u \in R, j \ge 1$, then we denote by u_{\bullet}^{j} the j-th power of u in **R**, i.e.

$$(21) u_{\bullet}^1 = u, \quad u_{\bullet}^{j+1} = (u_{\bullet}^j) \bullet u.$$

(Note that, if $u \in R$, then $u^j \in R$, but it can happen that $u^j \in F \setminus R$.)

Assuming (19), by (20) we obtain the equalities (22) in the corresponding cases U_l , U_r and U.

$$\mathcal{U}_{l}: \qquad u_{\bullet}^{j} = \begin{cases} u, & \text{if } j = 1 \\ t & \underline{uj-1}, & \text{if } 2 \leq j \leq m \\ t & \underline{ur-1}, & \text{if } j = qm+r, 2 \leq r \leq m+1 \end{cases} \\
(22) \quad \mathcal{U}_{r}: \qquad \qquad u_{\bullet}^{j} = t^{i+j}, & \text{if } j \geq 1; \\
\mathcal{U}: \quad u_{\bullet}^{j} = \begin{cases} u, & \text{if } j = 1 \\ t^{sn+j}, & \text{if } s \geq 1, 1 \leq j \leq (k-s)n+1. \\ t^{j-(k-s)n}, & \text{if } s \geq 1, (k-s)n+2 \leq j \leq kn+1 \end{cases}$$

Therefore:

$$\mathcal{U}_l: \qquad \qquad u_{ullet}^{m+1} = t^{\langle p+1 \rangle}; \ \mathcal{U}_r: \qquad u_{ullet}^{j+1} = u^{i+j+1}, \ \ ext{for each } j \in S;$$

(23)

$$\mathcal{U}: \quad u_{\bullet}^{in+1} = \left\{ \begin{array}{ll} t^{(i+s)n+1}, & \text{if } i+s \leq k \\ t^{(i+s-k)n+1}, & \text{if } i+s > k, 1 \leq i \leq k. \end{array} \right.$$

If $\eta(u) = t \neq u$ (i.e. $u = t^{sn+1}$, $s \geq 1$) and i = k, then in the last case we obtain

$$u_{\bullet}^{m+1}=u.$$

From (20) and (23) we obtain that, for any $v, w \in R$, the following equations hold:

$$\mathcal{U}_l : (v_{\bullet}^{m+1}) \bullet w = v \bullet w;$$

$$\mathcal{U}_r : v \bullet (w_{\bullet}^{i+1}) = v \bullet w, \text{ for each } i \in S;$$

$$\mathcal{U}: (v_{\bullet}^{m+1}) \bullet w = v \bullet w = v \bullet (w_{\bullet}^{n+1}).$$

Therefore, we have $\mathbf{R} \in \mathcal{U}_l(m)$, $\mathbf{R} \in \mathcal{U}_r(S)$, $\mathbf{R} \in \mathcal{U}(kn;n)$ in the cases: $\mathcal{U}(M;N) = \mathcal{U}_l(m)$, $\mathcal{U}(M;N) = \mathcal{U}_r(S)$, $\mathcal{U}(M;N) = \mathcal{U}(kn;n)$, respectively.

The following statement will complete the proof of Theorem 1.

Proposition 3.4. Let $G = (G; \cdot) \in \mathcal{U}(M; N)$. If $\lambda : B \to G$ is a mapping, and $\varphi : F \to G$ the homomorphism which extends λ , then the restriction of φ on R is a homomorphism from R into G.

Proof. It suffices to show the equality $\varphi(v \bullet w) = \varphi(v)\varphi(w)$, for each $v, w \in R$ such that $v \bullet w \neq vw$.

Then, in the case $\mathcal{U}(M; N) = \mathcal{U}_l(m)$, we have $v = t^{\langle p+1 \rangle}$ for a unique pair (t, p), where $t \in R, p \geq 0, \alpha(t) = t$, and $v \cdot w = tw$. Therefore, we have:

$$\varphi(v \bullet w) = \varphi(tw) = \varphi(t)\varphi(w) = \varphi(t)^{(p+1)}\varphi(w).$$

Then, by (11) we have:

$$\varphi(t)^{(p+1)}\varphi(w) = \varphi(t)^{\langle p+1 \rangle}\varphi(w) = \varphi(t^{\langle p+1 \rangle})\varphi(w) = \varphi(v)\varphi(w).$$

In the case $\mathcal{U}(M; N) = \mathcal{U}_r(S)$ we have: $w = t^{i+1}$, for a unique pair (t, i), where $t \in R, \beta(t) = t, i \in S$. Therefore,

$$\varphi(v \bullet w) = \varphi(vt) = \varphi(v)\varphi(t) = \varphi(v)\varphi(t)^{i+1} = \varphi(v)\varphi(t^{i+1}) = \varphi(v)\varphi(w).$$

In a similar way, we obtain that $\varphi(v \bullet w) = \varphi(v)\varphi(w)$, in the case \mathcal{U} .

By Propositions 3.2-3.4, **R** is a $\mathcal{U}(M; N)$ -free groupoid with the unique basis B, i.e. we have completed the proof of Theorem 1.

We say that the formula: $x^{m+1} \cdot y = xy$ $(x \cdot y^{n+1} = xy)$ is a left (a right) equation; a left or a right equation is called equation. It is well known that an equation holds in a variety $\mathcal{U}(M; N)$ iff it is satisfied in each $\mathcal{U}(M; N)$ -free groupoid. Therefore, the following statement describes the set of equations in a variety $\mathcal{U}(M; N)$.

Proposition 3.5. Let **H** be a free groupoid in the variety U(M; N). Then the following statements hold.

- (i) If $M \neq \emptyset$, $N = \emptyset$, gcd(M) = m, then a left equation $x^{m+1}y = xy$ holds in **H** iff m|n; no right equation holds in **H**.
- (ii) If $M = \emptyset$, $N \neq \emptyset$, then the right equation $xy^{j+1} = xy$ holds in \mathbf{H} iff $j \in \langle N \rangle$; no left equation holds in \mathbf{H} .
- (iii) If $M \neq \emptyset$, $N \neq \emptyset$, $\gcd(M) = m$, $n = \gcd(M \cup N)$, then $x^{i+1}y = xy$ iff $m \mid i$ and $xy^{j+1} = xy$ iff $n \mid j$ hold in H.

Proof. Let **R** be a $\mathcal{U}(M; N)$ -canonical groupoid with the basis B, and $a, b \in B$.

Then:

- (i) If $M \neq \emptyset$, $N = \emptyset$, $\gcd(M) = m$, then $(a^{i+1}_{\bullet}) \bullet b = ab = a \bullet b$ iff m|i; $a \bullet b^{j+1} \neq ab = a \bullet b$ for each $j \geq 1$.
- (ii) If $M = \emptyset$, $N \neq \emptyset$ and $S = \langle N \rangle$, then: $a^{i+1} \bullet b = a^{i+1}b \neq ab = a \bullet b$; and, if $j \geq 1$, then $a \bullet (a_{\bullet}^{j+1}) = ab = a \bullet b$ iff $j \in S$.
- (iii) If $M \neq \emptyset$, $N \neq \emptyset$, $\gcd(M) = m$, $n = \gcd(M \cup N)$, $i, j \geq 1$, then: $(a^{i+1}_{\bullet}) \bullet b = ab = a \bullet b \text{ iff } m|i,$ $a \bullet (b^{j+1}_{\bullet}) = ab = a \bullet b \text{ iff } n|j.$

Having in mind the definitions of the transformations ξ, η in each of the cases $\mathcal{U}_l(m), \mathcal{U}_r(S)$ and $\mathcal{U}(kn; n)$, as a corollary of Theorem 1 the following statement can also be obtained.

Proposition 3.6. If **H** is a U(M; N)-free groupoid with the basis B, then there exist retractions γ and δ of H with the following properties:

- (i) B is the set of primes in H, and $B \subseteq \operatorname{im} \gamma \cap \operatorname{im} \delta$; (If $x \in \operatorname{im} \gamma \cap \operatorname{im} \delta$, then we say that x is a base in H)
- (ii) $(\forall x, y \in H)xy = \gamma(x)\delta(y)$; $((\gamma(x), \delta(y)) \text{ is the pair of divisors of } xy \text{ in } \mathbf{H}; \text{ i.e. } \gamma(x) \text{ is the left and } \delta(y) \text{ the right divisor of } xy.)$

(iii) There exists a mapping $x \mapsto |x|$ from H into the set of positive integers with the following properties:

$$|xy| = |\gamma(x)| + |\delta(y)|,$$

$$\gamma(x) \neq x \iff |\gamma(x)| < |x|; \ \delta(x) \neq x \iff |\delta(x)| < |x|,$$
 for any $x, y \in H$.

Proof. If **R** is the $\mathcal{U}(M; N)$ -canonical groupoid with the basis B, then there exists a unique isomorphism $\varphi : \mathbf{R} \to \mathbf{H}$ such that $\varphi(b) = b$, for each $b \in B$. Defining $\gamma, \delta : H \to H$ by: $\gamma(x) = \xi(\varphi^{-1}(x))$, $\delta(x) = \eta(\varphi^{-1}(x))$, we obtain two retractions γ, δ of H such that (i)-(iii) hold, where the length of $x \in H$ is defined by $|x| = |\varphi^{-1}(x)|$. \square

In each of the cases $\mathcal{U}_l(m), \mathcal{U}_r(S), \mathcal{U}(kn; n)$, the results of Proposition 3.6 can be stated more explicitly as follows.

3.6. $U_l(m)$.

- (i) $\gamma = \alpha, \delta = 1_H$;
- (ii) $y \in H$ is a base in **H** iff $y \in \text{im}\gamma$; for each $x \in H$ there exists a unique y = bs(x) (the base of x) and unique $p = \exp(x) \ge 0$ (the exponent of x) such that $x = y^{(p)}$.
- (iii) bs(x) is the left (and y the right) divisor of xy.
- (iv) If b is a base in **H**, and $1 \le i < m$, $p \ge 0$, then $c = b \ \underline{b^{(p)}i}$ is also a base in **H**; $b \ \underline{b(p)i-1}$ is the left and $b^{(p)}$ the right divisor of c; in the same case $b \ \overline{b^{(p)}m-1}$ is the left and $b^{(p)}$ the right divisor of $b^{(p+1)}$.
- (v) If $x \in H$, $1 \le i \le j \le m+1$, then $x^i = x^j \Rightarrow i = j$.

3.6. $U_r(N)$.

- (i) $\gamma = 1_H, \delta = \beta;$
- (ii) y is a base in **H** iff $y \in \text{im}\delta$; for each $x \in H$ there exists a unique base y, and a unique $q \in \{0\} \cup \langle N \rangle$, such that $x = y^{q+1}$.

- (iii) The left divisor of xy is x and its right divisor is bs(y). Thus, $xy = uv \iff x = u$, bs(y) = bs(v).
 - 3.6. U(kn; n).
 - (i) x is a base in **H** iff $x^{m+1} \neq x$; for each $x \in H$ there exists a unique y (the base of x) and a unique $i \in \{0, 1, \dots, k\}$ (the exponent of x) such that $x = y^{in+1}$; x is a left base in **H** iff $i \neq k$, where i is the exponent of x.
- (ii) For any $x \in H$, $\delta(x)$ is the base of x, and

$$\gamma(x) = \left\{ \begin{array}{l} x, & \text{if} \ x \text{ is the left base} \\ y, & \text{if} \ y \text{ is the base of} \ x, \text{ and } x = y^{m+1} \end{array} \right.$$

$$\delta(x) = \left\{ \begin{array}{l} y, & \text{if} \ x = y^{in+1}, \ 0 \leq i \leq k, \\ x, & \text{otherwise.} \end{array} \right.$$

(iii) $\gamma(x)$ is the left and $\delta(y)$ the right divisor of xy.

4. Free subgroupoids of $\mathcal{U}(M;N)$ -free groupoids

We shall describe the set of pairs (M, N) of sets of positive integers such that the variety $\mathcal{U}(M; N)$ is hereditary, i.e. we shall prove Theorem 2.

Proposition 4.1. For any $m \geq 1$, the class of free objects in the variety $U_l(m)$ is hereditary.

Proof. Let **Q** be a subgroupoid of a $\mathcal{U}_l(m)$ -free groupoid **H**. We have to show that the set P of prime elements of Q is nonempty, and that **Q** is $\mathcal{U}_l(m)$ -free with the basis P. The proof will be given in several steps, where induction on |x|, for $x \in Q$, will be used.

- 1) If $a \in Q \setminus P$ and c is the right divisor of a in **H**, then $c \in Q$.
- 2) Let $a = b^{(p)} \in Q$, where b is the base of a in **H**. If q is the least non-negative integer such that $b' = b^{(q)} \in Q$, then we say that b' is the base of a in **Q**. Then, if $q \ge 1, b' \in P$.

By 1) and 2) we obtain:

3) $P \neq \emptyset$, and P is the least generating subset of **Q**.

- 4) If $c, d \in Q$, and b' is the base of c in \mathbb{Q} , then we say that (b', d) is the pair of divisors of cd in \mathbb{Q} . Then: |d| < |cd|, and: b' is prime or |cd| = |b'| + |d|.
- 5) Assume that $\mathbf{G} \in \mathcal{U}_l(m)$ and $\lambda: P \to G$ is a given mapping. There is a (unique) homomorphism $\varphi: Q \to G$ such that $\lambda = \varphi_{|P}$ is the restriction of φ on P. Namely, if $x \in Q$ is such that $|x| = \min\{|y| : y \in Q\}$, then $y \in P$, and thus $\varphi(x) = \lambda(x)$ is well defined. Assume that for each $x \in Q$, such that $|x| \leq i$, $\varphi(x) \in G$ is well defined and, moreover, if (y,z) is the pair of divisors of x in \mathbf{Q} , then $\varphi(y)$, $\varphi(z)$ are well defined, and $\varphi(x) = \varphi(y)\varphi(z)$.

Let $v \in Q \setminus P$ be such that |v| = i + 1, and (t, u) be the pair of divisors of v in \mathbf{Q} . Then $\varphi(t)$ and $\varphi(u)$ are well defined, and thus we can define $\varphi(v)$ by $\varphi(v) = \varphi(t)\varphi(u)$. Then $\varphi : \mathbf{Q} \to \mathbf{G}$ is a homomorphism which extends λ . \square

Proposition 4.2. The class of free objects in the variety $U_r(1)$ is hereditary.

Proof. This statement is one of the main results of [4], and it is also a corollary of Proposition 4.1. Namely, let $G = (G, \cdot)$ be a given groupoid, and the groupoid $G^{op} = (G, \circ)$ be defined by $x \circ y = yx$. Then, $G \in \mathcal{U}_r(1) \iff G^{op} \in \mathcal{U}_l(1)$, and H is $\mathcal{U}_r(1)$ -free iff H^{op} is $\mathcal{U}_l(1)$ -free. \square

Proposition 4.3. If N is a nonempty set of positive integers and $1 \notin N$, then the class of free objects in the variety $U_r(N)$ is not hereditary.

Proof. Let $n = \min(N)$, and let **H** be a $\mathcal{U}_{\tau}(N)$ -free groupoid with the basis B. Consider the subgroupoid **Q** generated by $\{b^n, b^{n+1}\}$, where $b \in B$. Then b^n is the unique prime in **Q**, and $\{b^n\}$ does not generate **Q**, which implies that **Q** is not free 7 . \square

Proposition 4.4. If $M \neq \emptyset$, $N \neq \emptyset$, then the class of free objects in the variety U(M; N) is not hereditary.

Proof. Let $m = \gcd(M), n = \gcd(M \cup N)$ and let **H** be a $\mathcal{U}(M; N)$ -free groupoid with the basis B. If $b \in B$, and **Q** is the subgroupoid generated by $\{b^{n+1}\}$, then the set of primes in **Q** is empty. (Namely, $(b^{n+1})^{m+1} = b^{n+1}$, which implies that b^{n+1} is not a prime in **Q**.)

Theorem 2 is a corollary of Propositions 4.1-4.4.

⁷Here, and further on in Section 4, if **H** is $\mathcal{U}(M; N)$ -free groupoid, and **Q** is a subgroupoid of **H**, we will write "**Q** is free" instead of "**Q** is $\mathcal{U}(M; N)$ -free".

Proposition 4.5. Let **H** be a U(M; N)-free groupoid and **Q** a subgroupoid of **H**, such that:

$$(24) (\forall x \in H)(x \in Q \Rightarrow bs(x) \in Q).$$

Then **Q** is free.

Proof. From (24) it follows that if $a \in QQ$ and (c,d) is the pair of divisors of a in \mathbf{H} , then $c,d \in Q$, and moreover the following equation holds:

$$|a| = |c| + |d|.$$

This implies that the set P of primes in \mathbf{Q} is nonempty and generates \mathbf{Q} . In the same way as 5) in the proof of Proposition 4.1, one can show that \mathbf{Q} is free with the basis P. \square

In the next three statements we describe free subgroupoids of $\mathcal{U}(M; N)$ -free groupoids when the class of $\mathcal{U}(M; N)$ -free groupoids is not hereditary.

Proposition 4.6. Let **H** be a $\mathcal{U}(M; N)$ -free groupoid, where $M \neq \emptyset$, $N \neq \emptyset$, and **Q** be a subgroupoid of **H**. If **Q** does not satisfy (24), then **Q** is not free.

Proof. Let $m = \gcd(M), n = \gcd(M \cup N), m = kn$, and let $a \in Q$ be such that $b \notin Q$, where b is the base of a in **H**. Then, there exists an $i \in \{1, 2, \dots, k\}$, such that $a = b^{in+1}$. Then:

$$a^{2} = b^{in+2}, \ a^{3} = b^{in+3}, \cdots, \ a^{(k-i)n+1} = b^{kn+1} = b^{m+1},$$

$$a^{(k-i)+2} = b^{2}, \ a^{(k-i)n+3} = b^{3}, \cdots, a^{(k-i)n+n} = b^{n},$$

$$a^{(k-i+1)n+1} = b^{n+1}, \cdots, a^{(k-i+2)n+1} = b^{2n+1}, \cdots, a^{kn} = b^{in}, \ a^{kn+1} = a$$

are elements of Q. Thus, $b^2, b^3, \dots, b^{m+1} \in Q$, but $b \notin Q$. From the equality $(b^{m+1})^{m+1} = b^{m+1}$ it follows that b^{m+1} is not a base, and if \mathbf{Q} were free, a base c in \mathbf{Q} and $j \in \{1, 2, \dots, k\}$ would exist, such that $b^{m+1} = c^{in+1}$, which would imply $i = k, c = b \in Q$, i.e. we would obtain a contradiction. \square

Proposition 4.7. Let **Q** be a subgroupoid of a $U_r(N)$ -free groupoid, where $n = \min(N) \in N$, and let, for $x \in Q$, j(x) be defined as follows:

(25)
$$j(x) = \min\{s : (bs(x))^{s+1} \in Q, s \ge 0\}.$$

Then, **Q** is free iff (26) $(\forall x \in Q) \ n|j(x)$.

Proof. Assuming the condition (26), in the same way as in the proof of Proposition 4.1, one can show that \mathbf{Q} is free.

Thus, we can assume that there exists an $a \in Q$, such that n is not a divisor of j=j(a). Then, b^{j+1} is a prime in \mathbf{Q} , where $b=\mathrm{bs}(a)$ is the base of a; moreover, then $b^{j+\nu} \in Q$, for any $\nu \geq 1$. Denote by \mathbf{T} the subgroupoid of \mathbf{Q} generated by the set P of primes in \mathbf{Q} . Thus: $T=\bigcup\{P_{\nu}:\nu\geq 1\}$, where $P_1=P,\ P_{\nu+1}=P_{\nu}\cup\{xy:x,y\in P_{\nu}\}$. Then, if $i\geq 1$ is such that $in>j,\ b^{in+1}\in Q\setminus T$, and therefore the set P of primes in \mathbf{Q} does not generate \mathbf{Q} . \square

Proposition 4.8. Let **H** be a $U_r(N)$ -free groupoid, where $gcd(N) \notin N$. A subgroupoid **Q** of **H** is free iff **Q** satisfies the condition (24).

Proof. Denote by S the additive groupoid of positive integers generated by N. Then $n = \gcd(S) = \gcd(N) \notin S$. If \mathbf{Q} satisfies the condition (24), then, by Proposition 4.5, \mathbf{Q} is $\mathcal{U}_r(N)$ -free.

Assume that there exists an $a \in Q$, such that $b \notin Q$, where b is the base of a in **H**. Therefore, there exists an $s \in S$, such that $a = b^{s+1}$. Let

(27)
$$i = \min\{\nu : b^{\nu+1} \in Q, \nu \ge 1\}.$$

Then $i \geq 1$, and $b^{i+1} \in Q$; moreover b^{i+1} is prime in **Q**. If $i \notin S$, then one can show that **Q** is not $\mathcal{U}_{\tau}(N)$ -free in the same way as in Proposition 4.7, in the case "n is not a divisor of j".

Thus we can assume that $i \in S$. Then $b^{i+\nu} \in Q$, for any $\nu \geq 1$.

Let s be the least element of S such that $s + \nu n \in S$, for any $\nu \ge 1$. (See [6, Lemma 1.6.iii] or [7].) Then $j = s + (i - n) \in S$, but $j - i = s - n \notin S$. Let k be the least element of S such that $i < k \le j$, and $j - k \in S \cup \{0\}$. Then: $i + j = k + i + \alpha$, where $\alpha \in S \cup \{0\}$.

Assume that **Q** is free. Then b^{i+1} and b^{k+1} are different bases in **Q**, but $(b^{i+1})^{j+1} = b^{i+j+1} = b^{i+k+\alpha+1} = (b^{k+1})^{i+\alpha+1},$

which is impossible. \Box

5. Ranks of free subgroupoids of $\mathcal{U}(M;N)$ -free groupoids

We shall first consider $\mathcal{U}(M; N)$ -free groupoids with one element basis $B = \{b\}$ in the cases $\mathcal{U}_l(1), \mathcal{U}_r(1)$ and $\mathcal{U}(1; 1)$ and then prove Theorem 3.

Proposition 5.1. If Z^+ is the set of positive integers, then the groupoid (Z^+, \bullet) defined by $i \bullet j = i+1$ is $\mathcal{U}_l(1)$ -free groupoid with the basis $\{1\}$. If \mathbf{Q} is a subgroupoid of (Z^+, \bullet) and m is the least element of Q, then \mathbf{Q} is a $\mathcal{U}_l(1)$ -free groupoid with the basis $\{m\}$. The groupoid $(Z^+, \bullet)^{op}$ is $\mathcal{U}_r(1)$ -free with the basis $\{1\}$.

Proposition 5.2. The groupoid $\mathbf{H} = (\{1, 2, \dots, m, m+1\}, \bullet)$, defined by

$$i \bullet j = \left\{ \begin{array}{ll} i+1, & \textit{for } i \leq m \\ 2, & \textit{for } i = m+1 \end{array} \right.$$

is U(1;1)-free groupoid with the basis $\{1\}$. If Q is a proper subgroupoid of H, then Q is not U(1;1)-free.

Proof. $Q = \{2, 3, \dots, m, m+1\}$ is the unique proper subgroupoid in **H**. The set of primes in **Q** is empty, and thus, **Q** is not $\mathcal{U}(1;1)$ -free. \square

Proposition 5.3. Let **H** be a U(M; N)-free groupoid with the basis $\{b\}$, where

(28)
$$\mathcal{U}(M; N) \notin \{\mathcal{U}_l(1), \mathcal{U}_r(1)\} \cup \{\mathcal{U}(m; 1) : m \ge 1\},$$

and let $A = \{a_i : i \geq 1\} \subseteq H$ be defined as follows:

$$(29) a_1 = b^2, a_{i+1} = ba_i.$$

If **Q** is a subgroupoid of **H** generated by A, then **Q** is $\mathcal{U}(M; N)$ -free with the basis A, and $a_i = a_j \Rightarrow i = j$.

Proof. Assuming that $\mathbf{H} = \mathbf{R}$ is the $\mathcal{U}(M; N)$ -canonical groupoid with the basis $\{b\}$, we obtain that $a_i = a_j \Rightarrow i = j$, i.e. A is an infinite subset of H. Moreover, for each $i \geq 1$, b is the left divisor for a_i , and $b \notin Q$. This implies that a_i is prime in \mathbf{Q} .

It remains to show that **Q** is $\mathcal{U}(M; N)$ -free with the basis A.

If $\mathcal{U}(M; N) = \mathcal{U}_l(m)$, by Proposition 4.1 we obtain that **Q** is $\mathcal{U}(M; N)$ —free with the basis A.

Assume now that $\mathcal{U}(M;N) = \mathcal{U}_r(S), 1 \notin S = \langle N \rangle$, and that $d = c^{i+1} \in Q$, where $i \in S$, and c is a base in H. Then $d \notin A$, and therefore $c^i \in Q$. Continuing in such a way, we would obtain $c \in Q$. Thus by Proposition 4.5, (24) is satisfied, and thus Q is $\mathcal{U}_r(S)$ -free with the basis A.

Finally, let $\mathcal{U}(M; N) = \mathcal{U}(kn; n), n \geq 2$. The fact that A generates **Q** implies:

$$Q = \bigcup \{A_i : i \ge 1\}, \text{ where } A_1 = A, A_{i+1} = A_i \cup \{xy : x, y \in A_i\}.$$

Assume that $d = c^{in+1} \in Q$, where $1 \le i \le k$, and c is a base in \mathbf{H} . Let s be the least positive integer, such that $d \in A_{s+1} \setminus A_s$. Such an s exists as $d \notin A$. Thus, there exist $d', d'' \in A_s$, such that $c^{in+1} = c^{in}c = d = d'd''$, and therefore $c^{in} = d'$, $d'' = c^{jn+1}$ for some $0 \le j \le k$. So, $c^{in} \in Q \setminus A$; then, by the same argument, $c^{in-1} \in Q$, etc., and by an obvious induction we obtain that $c \in Q$. Therefore, \mathbf{Q} is free. \square

We note that in the case $\mathcal{U}(M; N) = \mathcal{U}_l(m)$, **Q** satisfies the relation (24). Also:

$$\mathcal{U}(M; N) = \mathcal{U}_l(1) \Rightarrow A = \{b^2\}$$
, and \mathbf{Q} is $\mathcal{U}_l(1)$ -free with the basis A ; $\mathcal{U}(M; N) = \mathcal{U}_r(1) \Rightarrow Q = A$, and \mathbf{Q} is $\mathcal{U}_r(1)$ -free with the basis $\{b^2\}$; $\mathcal{U}(M; N) = \mathcal{U}(m; 1) \Rightarrow A = \{b^2\}, Q = \{b^2, b^3, \dots, b^{m+1}\}$, and \mathbf{Q} is not

The proof of the following statement is the same as the proof of Proposition 5.3, and moreover, the assumption (28) is not necessary.

Proposition 5.4. Let **H** be a U(M; N)-free groupoid with the basis $\{a, b\}$, $a \neq b$, and let $C = \{c_i : i > 1\}$ be defined as follows:

(30)
$$c_1 = ab, c_{i+1} = ac_i.$$

Then $c_i = c_j \Rightarrow i = j$, and the subgroupoid \mathbf{Q} of \mathbf{H} generated by C is $\mathcal{U}(M; N)$ -free with the basis C.

This completes the proof of Theorem 3.

References

 $\mathcal{U}(m;1)$ -free.

Bruck, R. H., A Survey of Binary Systems, Berlin, Götingen, Heidelberg, 1956.

- [2] Burris, S., Sankappanavar, H. P., A Course in Universal Algebra, Springer-Verlag, 1981.
- [3] Cohn, P. M., Universal Algebra, Harper & Row, 1965.
- [4] Čupona G. and Celakoski, N., Free groupoids with $xy^2 = xy$, Bilten SDMI 21 (1997), 5–16.
- [5] Čupona, \acute{G} . and Celakoski, N., On groupoids with the identity $x^2y^2=xy$, to appear.
- [6] Čupona, G., Celakoski, N. and Janeva, B., Varieties of groupoids with the axioms of the form $x^{m+1}y = xy$ and/or $xy^{n+1} = xy$, to appear.
- [7] Dimovski, D., Semigroups of integers with addition (in Macedonian), Contributions Maced. Acad. Sci. and Arts, Ser. Nat. Sci. Math. 9 (2) (1977), 21-26.
- [8] Markovski, S., Finite Mathematics (in Macedonian), Skopje, 1993.

Received December 28, 1998.