Vol. 29, No. 2 (1999), 163-169

PROC. VIII INT. CONF.

"Algebra & Logic" (Novi Sad, 1998)

WEIGHTED BLOCK DESIGNS AND STEINER SYSTEMS

Dončo Dimovski

Institute of Mathematics, University of Skopje P.O. Box 162, 91000 Skopje, Macedonia e-mail: donco@iunona.pmf.ukim.edu.mk

Alija Mandak

Faculty of Science, University of Priština Vidovdanska bb., 38000 Priština, Yugoslavia

Abstract

We consider weighted block designs and complete Steiner systems, and compare them with totally symmetric (n, m)-quasigroups. We show that a complete Steiner system S'(2, k, v) is equivalent to a totally symmetric (2, k - 2)-quasigroup, and that any complete Steiner quadruple system S'(3, 4, v) is equivalent to a totally symmetric (3, 1)-quasigroup.

AMS Math. Subject Classification (1991): 05B05, 20N05 Key words and phrases: weighted block designs, (n, m)-quasigroups, Steiner systems

An incidence structure is a triple $\mathbf{D} = (V, \mathbf{B}, I)$, where V and \mathbf{B} are disjoint sets and $I \subseteq V \times \mathbf{B}$. The elements of V are called *points*, and the elements of \mathbf{B} are called *blocks*. If A is a point of V, the set of all blocks incident with A is denoted by (A). Thus, $(A) = \{b | b \in \mathbf{B}, AIb\}$. Moreover, for A_1, A_2, \ldots, A_n , the set of all the blocks incident with all the points A_i is denoted by (A_1, A_2, \ldots, A_n) . Thus,

$$(A_1, A_2, \dots, A_n) = \{b | b \in \mathbf{B}, A_i Ib \text{ for all } i \in \mathbf{N}_n\},\$$

where **N** is the set of all positive integers and $\mathbf{N}_n = \{1, 2, ..., n\}$. Dually, for $b, b_1, b_2, ..., b_n \in \mathbf{B}$, $(b) = \{A \mid A \in V, AIb\}$, and

$$(b_1, b_2, \dots, b_n) = \{A | A \in V, AIb_i \text{ for all } i \in \mathbf{N}_n\}.$$

We consider only the incidence structures where distinct blocks have distinct sets of points. We identify each block b with the set (b) and identify the incidence relation with the membership relation \in .

Definition 1. A finite incidence structure $\mathbf{D} = (V, \mathbf{B}, \in)$ is called *t-design* with parameters $v, k, \lambda \in \mathbf{N}$, if:

- (T.1) |V| = v,
- (T.2) $|(A_1, A_2, \ldots, A_t)| = \lambda$, for any t distinct points $A_1, A_2, \ldots, A_t \in V$,
- (T.3) |(b)| = k, for any $b \in \mathbf{B}$.

A 2-design with parameters v, k, λ , is usually called *block* design with parameters v, k, λ . A t-design with parameters v, k, 1 is called a *Steiner t-system*, and is denoted by S(t, k, v). A Steiner 2-system S(2, k, v) is called only Steiner system with parameters v, k, 1.

The following definition generalizes the notion of t-design.

Definition 2. A finite incidence structure $\mathbf{D} = (V, \mathbf{B}, \in)$ is called weighted *t-design* with parameters v, k, λ , if for any $b \in \mathbf{B}$ there is a map $f_b : (b) \to \mathbf{N}$, such that:

$$(WT.1) |V| = v,$$

- (WT.2) $|(A_1, A_2, ..., A_t)| = \lambda$, for any t distinct points $A_1, A_2, ..., A_t \in V$,
- (WT.3) $k_b = k$, for any $b \in \mathbf{B}$, where:
 - (a) the image $f_b(A)$ is denoted by t_{Ab} , and is called the weight of the point A in the block b,
 - (b) for $A \in V$, its weight is $t_A = \sum_{A \in b} t_{Ab}$, and
 - (c) for $b \in \mathbf{B}$, the number $k_b = \sum_{A \in b} t_{Ab}$ is called the size of b.

Every block design, i.e. 2-design with parameters v, k, λ is a weighted block design, where for all $A \in b$, $t_{A,b} = 1$, for all $b \in \mathbf{B}$, $k_b = k$, and for all $A \in V$, $t_A = r$, where r = |(A)| is the number of blocks containing A.

Definition 3. A weighted t-design $\mathbf{D}' = (V', \mathbf{B}, \in)$ is an extension of a weighted t-design $\mathbf{D} = (V, \mathbf{B}, \in)$, if $V \subseteq V'$ and for each $b \in \mathbf{B}$ there is $b' \in \mathbf{B}'$ such that $(b) \subseteq (b')$, and for each $A \in (b)$, $t_{Ab'} = t_{Ab}$.

Definition 4. An extension (V', \mathbf{B}', \in) of a Steiner system (V, \mathbf{B}, \in) with parameters v, k, 1, defined by

- (a) V' = V,
- (b) $\mathbf{B}' = \mathbf{B} \cup \mathbf{B}''$ where $\mathbf{B}'' = \{\{A\} | A \in V\}$, and
- (c) for each $A \in V$, $t_A = r + k$, where r is the number of blocks in B containing A,

is called a *complete Steiner system* with parameters v, k, 1, and is denoted by S'(2, k, v).

A Steiner 3-system with parameters v, 4, 1, i.e. S(3, 4, v), is called a Steiner quadruple system.

Definition 5. Let (V, \mathbf{B}, \in) be a Steiner quadruple system. An extension (V', \mathbf{B}', \in) of (V, \mathbf{B}, \in) with parameters v, 4, 1, defined by:

- (a) V' = V,
- (b) $\mathbf{B'} = \mathbf{B} \cup \mathbf{C} \cup \mathbf{P}$, where $\mathbf{C} = \{\{A\} | A \in V\}$ and $\mathbf{P} = \{\{A, B\} | A \neq B \in V\}$, and
- (c) for each $A \in V$, $t_A = r + 4 + 2(v 1)$, where r is the number of blocks in B containing A,

is called a *complete Steiner quadruple system* with parameters v, 4, 1, and is denoted by S'(3, 4, v).

Next we compare Steiner systems and quadruple systems with the notion of totally symmetric (n, m)-quasigroups given below.

Definition 6. Let $Q \neq \emptyset$, $n, m \in \mathbb{N}$. A map $f: Q^n \to Q^m$ is called an (n, m)-operation of Q, and the pair (Q, f) is called a (n, m)-groupoid. An (n, m)-groupoid is called (n, m)-quasigroup, if

(A) for each $(a_1, a_2, \ldots, a_n) \in Q^n$, and each injection $\varphi : \mathbf{N}_n \to \mathbf{N}_{n+m}$, there exists a unique $(b_1, b_2, \ldots, b_{n+m}) \in Q^{n+m}$, such that for each $i \in \mathbf{N}_n$, $a_i = b_{\varphi(i)}$ and

$$f(b_1, b_2, \dots, b_n) = (b_{n+1}, b_{n+2}, \dots, b_{n+m}).$$

In the paper [3], an (n, m)-quasigroup is interpreted as an (n + m)-ary relation, as follows:

Definition 7. An (n+m)-ary relation $\rho \subseteq Q^{n+m}$ is called (n,m)-quasi-group relation, if

(A') for each $(a_1, a_2, \ldots, a_n) \in Q^n$, and each injection $\varphi : \mathbf{N}_n \to \mathbf{N}_{n+m}$, there exists a unique $(b_1, b_2, \ldots, b_{n+m}) \in Q^{n+m}$, such that for each $i \in \mathbf{N}_n$, $a_i = b_{\varphi(i)}$ and $(b_1, b_2, \ldots, b_{n+m}) \in \rho$.

The following theorem is proved in [3].

Theorem 1. An (n, m)-groupoid (Q, f) is an (n, m)-quasigroup if and only if the (n + m)-ary relation defined by

$$(x_1, x_2, \dots, x_{n+m}) \in \rho \Leftrightarrow f(x_1, x_2, \dots, x_n) = (x_{n+1}, x_{n+2}, \dots, x_{n+m})$$

is an (n, m)-quasigroup relation.

Definition 8. An (n, m)-quasigroup is called *totally symmetric*, if

$$f(x_1, ..., x_n) = (x_{n+1}, ..., x_{n+m}) \Leftrightarrow f(y_1, ..., y_n) = (y_{n+1}, ..., y_{n+m})$$

for any $(x_1, x_2, \ldots, x_{n+m}) \in Q^{n+m}$ and any permutation $(y_1, y_2, \ldots, y_{n+m})$ of $(x_1, x_2, \ldots, x_{n+m})$. The (n+m)-ary relation ρ in this case is called *totally symmetric*.

Theorem 2. Every complete Steiner system (V, \mathbf{B}, \in) defines a totally symmetric (2, k-2)-quasigroup relation $\rho \subseteq V^k$, where

$$(A_1, A_2, \dots, A_k) \in \rho \Leftrightarrow \{A_1, A_2, \dots, A_k\} \in \mathbf{B}.$$

Conversely, any totally symmetric (2, k-2)-quasigroup relation $\rho \subseteq V^k$ satisfying $(A, A, \ldots, A) = (A^k) \in \rho$ for any $A \in V$, defines a complete Steiner system $S'(2, k, v) = (V, \mathbf{B}, \in)$, where

$$\{A_1, A_2, \dots, A_k\} \in \mathbf{B} \Leftrightarrow (A_1, A_2, \dots, A_k) \in \rho.$$

Proof. Let $S'(2,k,v)=(V,\mathbf{B},\in)$ be a complete Steiner system with parameters v,k,1, and $\rho\subseteq V^k$ be defined as above. From the definition it follows that if $(A_1,A_2,\ldots,A_k)\in\rho$, then either $|\{A_1,A_2,\ldots,A_k\}|=k$ or $A_1=A_2=\ldots=A_k$, and moreover, $(A_1,A_2,\ldots,A_k)\in\rho$ if and only if $(B_1,B_2,\ldots,B_k)\in\rho$ for an arbitrary permutation (B_1,B_2,\ldots,B_k) of (A_1,A_2,\ldots,A_k) . Hence ρ is totally symmetric k relation. For any two distinct points $A\neq B$, there is a unique block containing A,B, i.e. there is a unique $(A_1,A_2,\ldots,A_k)\in\rho$, such that $A,B\in\{A_1,A_2,\ldots,A_k\}$. And for any $A\in V$, the pair (A,A) is in the unique $(A,A,\ldots,A)\in\rho$. Hence, ρ is a totally symmetric (2,k-2)-quasigroup relation.

Conversely, let $\rho \subset V^k$ be a totally symmetric (2, k-2)-quasigroup relation satisfying $(A, A, \ldots, A) \in \rho$, and let (V, \mathbf{B}, \in) be defined as above. If $(A_1, A_2, \ldots, A_k) \in \rho$ and $A_i = A_j = A$ for some $i \neq j$, then, since $(A, A, \ldots, A) \in \rho$, it follows that $A_1 = A_2 = \ldots = A_k = A$. Hence, if $(A_1, A_2, \ldots, A_k) \in \rho$, then $|\{A_1, A_2, \ldots, A_k\}| = k$ or $A_1 = A_2 = \ldots = A_k$. Let $\mathbf{B}' = \mathbf{B} \setminus \{\{A\} \mid A \in V\}$. Then it is easy to check that (V, \mathbf{B}', \in) is a Steiner system with parameters v, k, 1, and (V, \mathbf{B}, \in) is its extension. Hence, (V, \mathbf{B}, \in) is a complete Steiner system with parameters v, k, 1.

Example 1. A projective plane (V, B, I) of order 3 is a Steiner system $S(2,4,3^2+3+1)$. The weighted block design (V',B',I), where V=V' $B'=B\cup B''$, $B''=\{\{A\}|\ A\in V\}$, is a complete Steiner sistem with the same parameters as those of (V,B,I). The relation $\rho\subset V^4$ defined by $(A_1,A_2,A_3,A_4)\in\rho$ if and only if $(A_1,A_2,A_3,A_4)\in B$ or $A_1=A_2=A_3=A_4$, is a totally simmetric (2,2)-quasigroup relation satisfying the condition $(A,A,A,A)\in\rho$. The number of points is $|V|=3^2+3+1=13$, the number of blocks is |B'|=13+13=26, and $t_A=4+4=8$, for all $A\in V$.

Theorem 3. Every complete Steiner quadruple system (V, \mathbf{B}, \in) defines a totally symmetric (3,1)-quasigroup relation $\rho \subseteq V^4$, where

$$(A_1, A_2, A_3, A_4) \in \rho \Leftrightarrow \{A_1, A_2, A_3, A_4\} \in \mathbf{B}.$$

Conversely, any totally symmetric (3,1)-quasigroup relation $\rho \subseteq V^k$, satisfying $(A, A, B, B) \in \rho$, for any $A, B \in V$, defines a complete Steiner quadruple system $S'(3, 4, v) = (V, \mathbf{B}, \in)$, where

$$\{A_1, A_2, A_3, A_4\} \in \mathbf{B} \Leftrightarrow (A_1, A_2, A_3, A_4) \in \rho.$$

Proof. Let (V, \mathbf{B}, \in) be a complete quadruple Steiner system S'(3,4,v) and $\rho \subseteq V^4$ be defined as above. From the definition it follows that if we have $(A_1, A_2, A_3, A_4) \in \rho$, then either $|\{A_1, A_2, A_3, A_4\}| = 4$ or $A_1 = A_2 \neq A_3 = A_4$ or $A_1 = A_3 \neq A_2 = A_4$ or $A_1 = A_4 \neq A_2 = A_3$ or $A_1 = A_2 = A_3 = A_4$, and moreover, $(A_1, A_2, A_3, A_4) \in \rho$ if and only if $(B_1, B_2, B_3, B_4) \in \rho$ for any permutation (B_1, B_2, B_3, B_4) of (A_1, A_2, A_3, A_4) . Hence, ρ is a totally symmetric 4-relation. For any three distinct points $A \neq B \neq C \neq A$, there is a unique block containing A, B, C, i.e. there is a unique $(A_1, A_2, A_3, A_4) \in \rho$ such that $A, B, C \in \{A_1, A_2, A_3, A_4\}$. For any two distinct points $A \neq B \in V$, there is a unique block containing A, B, i.e. there is a unique $(A_1, A_2, A_3, A_4) \in \rho$, such that $\{A_1, A_2, A_3, A_4\} = \{A, B\}$. For any $A \in V$, there is unique $(A, A, A, A) \in \rho$. Hence, ρ is a totally symmetric (3,1)-quasigroup relation.

Conversely, let $\rho \subset V^4$ be a totally symmetric (3,1)-quasigroup relation satisfying $(A,A,B,B) \in \rho$, for any $A,B \in V$, and let (V,\mathbf{B},\in) be defined as above. If $(A_1,A_2,A_3,A_4) \in \rho$ and $A_i = A_j = A_s$ for some $i \neq j \neq s \neq i$, then, since $(A,A,A,A) \in \rho$, it follows that $A_1 = A_2 = A_3 = A_4$. If $(A_1,A_2,A_3,A_4) \in \rho$ and $A_i = A_j$, while $A_s \neq A_i$ and $A_s \neq A_j$ for some $i \neq j \neq s$, then, since $(A_i,A_i,A_s,A_s) \in \rho$, it follows that $\{A_1,A_2,A_3,A_4\} = \{A,B\}$. Hence, if $(A_1,A_2,A_3,A_4) \in \rho$, then either $|\{A_1,A_2,A_3,A_k\}| = 4$ or $A_1 = A_2 \neq A_3 = A_4$ or $A_1 = A_3 \neq A_2 = A_4$ or $A_1 = A_4 \neq A_2 = A_3$ or $A_1 = A_2 = A_3 = A_4$. Let $\mathbf{B}' = \mathbf{B} \setminus (\{\{A\} | A \in V\} \cup \{\{A,B\} | A \neq B \in V\})$. Then it is easy to check that (V,\mathbf{B}',\in) is a Steiner quadruple system S(3,4,v), and (V,\mathbf{B},\in) is its extension. Hence (V,\mathbf{B},\in) is a complete Steiner system S'(3,4,v). \square

Example 2. Let (V, B, I) be a Steiner quadruple systems S(3, 4, 8). $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$, $B = \{(1234), (5678), (1256), (3478), (1278), (3456), (1357), (2468), (1368), (2457), (1458), (2367), (1467), (2358)\}$. The weighted block design (V', B', I), where V = V', $B' = B \cup B'' \cup B'''$, $B'' = \{\{A\} | A \in V\}$, $B''' = \{\{A, B\} | A \neq B \in V\}$ is a complete Steiner quadruple systems with the same parameters as those of (V, B, I).

The relation $\rho \subset V^4$ defined by $(A_1, A_2, A_3, A_4) \in \rho$ if and only if $(A_1, A_2, A_3, A_4) \in B$ or $A_1 = A_2 = A_3 = A_4$, or $A_1 = A_2 \neq A_3 = A_4$

or $A_1 = A_3 \neq A_2 = A_4$ or $A_1 = A_4 \neq A_2 = A_3$ is a totally symmetric (3,1)-quasigroup. The number of points is |V|=8, the number of blocks is $|B'|=|B|+|B''|+|B'''|=14+8+7+\cdots+2+1=50$. For every point $A \in V$ its weight is $t_A=8+4+7\cdot 2=26$.

References

- [1] Beth, T., Jungnickel D. and Lenz, H., Design Theory, Manheim, Wien, Zürich, 1985.
- [2] Čupona, G., Stojaković, Z. and Ušan, J., On finite multiquasigroups, Publ. Inst. Math. (Beograd) 20 (43) 1981, 53-59.
- [3] Čupona, G., Ušan J. and Stojaković, Z., Multiquasigroups and some related structures, Prilozi MANU I/1, Skopje, 1980.
- [4] Dimovski, D. and Mandak, A., Incidence structures with n-metrics, Zb. Rad. Fil. Fak. (Niš) 6 (1992), 151-155.
- [5] Mandak, A., The existence of $\langle Nn, E \rangle$ -nets with (n + 1)-distance, Znanstvena revija Maribor (1990), 93-101.
- [6] Mandak, A., On weighted block designs, Proc. Math. Conf. (Priština, 1994), pp. 21-25.
- [7] Ušan, J., $\langle Nn, E \rangle$ -seti s (n+1)-rastojaniem, Rew. Res. Fac. Sci. Univ. Novi Sad Ser. Math. 17 (2) (1989), 65–87.

Received December 31, 1998.