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THE JORDAN DECOMPOSITION OF THE
NULL-ADDITIVE SIGNED FUZZY MEASURES

Endre Pap !

Abstract. We investigated the signed null-additive fuzzy measure m,
the revised monotone set function which vanishes at the empty set and
such that m(B) = 0 implies m{A U B) = m(A) and which is continuous
from the above and continuous from below. For such set function m, a
Jordan decomposition type theorem was proved and this result enabled
the definition of the total variation |m| of m. The absolute continuity of
a null-additive signed fuzzy measure with respect to another null-additive
signed fuzzy measure was introduced.
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1. Introduction

A wide class of non-additive set functions, the so-called null-additive set
functions, include many important set functions as, for example, submeasures
[3],[4] , k—triangular set functions [9],[10], decomposable measures [5], [6], [8],
[11], [12], [13], [25] etc., whose numerous interesting properties are presented in
the books of Z. Wang, G. Klir [24] and E. Pap [14].

The signed fuzzy measure was introduced by B. Jiao [7] and investigated also
by L. Xuecheng [21]. The notion of signed fuzzy measure introduced in [7] in
special case does not reduce to the usual fuzzy measure, but to the modification
of this notion [21]. So, we shall use the last version of the notion of signed fuzzy
measure.

In this paper we shall use the Hahn decomposition type theorem obtained in
[21] for null-additive signed fuzzy measures. This result enables us to introduce
the usual notion of total variation for null-additive signed fuzzy measure, and
then the notion of absolute continuity of a null-additive signed fuzzy measure
with respect to another null-additive signed fuzzy measure.

2. Signed fuzzy measures

Throughout this paper ¥ denotes a o-algebra of subsets of the given set X.
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Definition 1. A signed fuzzy measure m,m : ¥ — [—oco, 00|, is an extended
real-valued set function m defined on o-algebra T and with the properties:

(FM,) m(#) =0,
(FM3) E,FeX, ENF =4, then
(a) m(E) >0, m(F)>0, max(m(E),m(F)) > 0 implies

m(E U F) > max(m(E), m(F));

(b) m(F) <0, m(F) <0, min(m(E),m(F)) <0 implies

m(E U F) <min(m(E), m(F));

\

(¢) m(E) >0, m(F) <0 impliesm(E) >m(EUF)>m(F).

(FM3) E\CEyC .. E,ex = m(U, B =lim, e m(E,),

(FMy4) E, C E; C ... , E, € ¥ and there exrists ng such that
|m(En,)| < oo = N(ﬂzc:l Ey) = limy, 5 00 m(Ey).

The revised monotonicity (FMz) for finite signed measures was introduced in a
little bit different form by B. Jiao [7], and in the present form for infinite signed
measures by Liu Xuecheng [21].

Example 1. Any non-negative signed fuzzy measure is usnally a fuzzy measure.
Namely, the condition (FM3), (a) implies the monotonicity of m, i.e.

ECF = m(E) < m(F).

But also, each fuzzy measure is a signed fuzzy measure.
Example 2. The classical signed measure is a signed fuzzy measure,

We have by Wang [23]

Definition 2. A4 set function m, m : & — [—o00, ), is called null-additive, if
we have

m(A U B) = m(A)
whenever A,B € X, ANB =10, and m(B) = 0.
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3. The Jordan decomposition

Definition 3. A set A from X is called a positive set (resp. negative set) for
the signed fuzzy measure m on (X, X) if for every subset E of A which belongs
to ¥ we have m(E) > 0 (resp. m(E) <0).

We shall need the following Hahn decomposition type theorem proved by
Liu Xuecheng [21].

Theorem 1. Let m be a signed fuzzy measure on (X, X). If in takes al most
one of the values —co or +oo, and if

EeX,|Im(F)|<+oc = |m(F)<+4cc (FCE,FeX),

then there erist two disjoint sels A and B from ¥ such that AUB = X whereby
A s a positive set and B is a negative set.

Remark 1. The classical signed measure satisfies the conditions of the previous
theorermmn, so that in this case the previous theorem reduces to the classical Hahn
decomposition theorem.

The obtained Hahn decomposition of m in Theorem 1 (which is not unique!)
we shall denote by (A, B).

In the rest of the paper we shall suppose, without loss of generality, that the
signed fuzzy measure m satisfies the condition

—co < m(E} < +o0 (F €X).

Now we can prove the following version of the Jordan decomposition theo-
rem.

Theorem 2. Let m be a null-additive signed fuzzy measure. Then there exist
uniquely determined null-additive fuzzy measures m* and m~ such that

m* >m> —m .
If m has a representation in the form
m= Ay — /\2,
where Ay and Ay are null-additive fuzzy measures, then Ay > mt and Ay > m™.

Proof. Using Theorem 1 we obtain a positive set A and a negative set B for m,
both from ¥. We define

mt(E)=m(ENA4) and m~ (F) = -m(ENB).

We shall prove that the previous definition is correct. If we take two different
Hahn decompositions (Ay, B)) and (A;, B;) of m, i.e., X = A;UB; with A;nN
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B; =0 (i=1,2), and A; are positive sets and B; are negative sets with respect
to m, then we have

m(EN A1) =m(ENA;) and m(EnNB;) = m(E N By).

We shall prove only the first equality since the second can be proved in a quite
similar way.
Since E N (A2 \ A1) is a subset of EN A, we have

m(EN{Az\ 41)) > 0.
Since E N (Az \ A;) is also a subset of the set E N B; we have
m(EN(Az\ 41)) <0.
The last two inequalities imply
m(E N (Az\ 41)) =0.
Exchanging A; and A, in the last equality we obtain
m(E N (Az \ A1) =0.
By the null-additivity of m we have
m(ENA;) =m(EN(A;NA)U(EN (41 \ 42))
=m(EN(A1NA)U(EN (A1 \A)U(EN (42 \ A1)
=m(EN (A1 NA)U(EN(A4Ax\ Ar)))
=m(E N Ay).

It is easy to see that m* and m™ are fuzzy measures. We shall prove that m*
is null-additive. Namely, if C € ¥ is such that m*(C) = 0 we have m(CNA) = 0
and so we obtain

mt(EUC)=m((EUC)NA)=m((ENA)U(CNA))=m(ENA)=m"(E).

In a quite analogous way we can prove that m~ is also null-additive.
By the revised monotonicity of m (condition (c) in (FM3)) and the definitions
of m*™ and m™ we obtain

mt >m>-m".

To prove the second part of the theorem suppose that m is represented in
the form A; — A9, where A; and ), are null-additive fuzzy measures. Then, by
the inequality m < A1 we have

mt(E) <m(ENA) < M(ENA)<\M(E) (E€X).
In an analogous way we obtain by the inequality —m < Ag that

m (E)=-m(ENB) < X\ (ENB)<X(E) (E€X)
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Open problem: Does there exist for any null-additive signed fuzzy mea-
sure m a representation m = A\; — Ay, where A\; and Ay are null-additive fuzzy
measures?

4. The variation

By the previous result for a null-additive signed fuzzy measure m the set
functions m* and m~ are uniquely determined. So we can introduce the notion
of a total variation of m in an analogous way as for the classical measure.

Definition 4. The total variation |m| of a null-additive signed fuzzy measure
m is given by
|m|=m* +m™.

Now we have the following analogous property as for classical signed measure.

Theorem 3. The total variation |m| of a null-additive signed fuzzy measure m
is a null-additive fuzzy measure which satisfies the inequality

Im(E)| < [m|(E) (E € X).
Proof. It is obvious that |m| is a fuzzy measure. We shall use the inequality
mt >m>-m".
Suppose first that m(E) > 0. Then by the last inequality m*(E) > m(E).
Therefore,
Im|(E) = m* (E) + m™(E) > m(E) = [m(E)|.
Suppose now that m(E) < 0. Then we have —m(E) < m™(E). Therefore
(m(E)| = ~m(E) < m™(E) < |m|(E).

If m(E) = 0, then since || is always non-negative, we have also in this case
the desired inequality.

Definition 5. Let m and A be two null-additive signed fuzzy measures on X. m
ts absolutely continuous with respect to A, m K A, if m(E) =0 for every E € &
such that |A(E) = 0.

We have the following characterization of the notion of absolute continuity.

Theorem 4. If m and A are null-additive signed fuzzy measures, then the fol-
lowing conditions are equivalent to each other

(i) m<),

(i) m*t < Xandm™ <A,

(ii1) |m| < Al
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