TWO GENERAL FIXED POINT THEOREMS ON THREE COMPLETE METRIC SPACES

Valeriu Popa 1

Abstract. Two general fixed point theorems on three complete metric spaces which generalize the results from [1] and [2] for mappings satisfying implicit relations, are proved.

AMS Mathematics Subject Classification (1991): 54H25
Key words and phrases: three metric spaces, fixed point, implicit relations

1. Introduction

The following fixed point theorem was proved by Nung [1] and Jain, Shrivastava and Fisher [2].

Theorem 1. [2] Let $(X, d), (Y, \rho)$ and (Z, σ) be complete metric spaces and suppose T is a mapping of X into Y, S is a mapping of Y into Z and R is a mapping of Z into X satisfying the inequalities

```
\begin{aligned} &d(RSy,RSTx).max\{d(x,RSy),d(x,RSTx)\} \leq \\ &c\sigma(Sy,STx).max\{\sigma(Sy,STx),d(x,RSTx)\} \\ &\rho(TRz,TRSy).max\{\rho(y,TRz),\rho(y,TRSy)\} \leq \\ &cd(Rz,RSy).max\{d(Rz,RSy),\rho(y,TRSy)\} \\ &\sigma(STx,STRz).max\{\sigma(z,STx),\sigma(z,STRz)\} \leq \\ &c\rho(Tx,TRz),.max\{\rho(Tx,TRz),\sigma(z,STRz)\} \end{aligned}
```

for all x in X, y in Y, z in Z, where $0 \le c < 1$. If one of the mappings R, S, T is continuous, then RST has a unique fixed point u in X, TRS has a unique fixed point v in Y, and STR has a unique fixed point w in Z. Further, Tu = v, Sv = w and Rw = u.

Theorem 2. [1] Let (X,d), (Y,ρ) and (Z,σ) be complete metric spaces and suppose T a continuous mapping of X into Y, S is a continuous mapping of Y into Z and R is a continuous mapping of Z into X, satisfying the inequalities

```
d(RSTx,RSy) \leq cmax\{\rho(y,Tx),d(x,RSTx),d(x,RSy),\sigma(Sy,STx)\}
\rho(TRSy,TRz) \leq cmax\{\sigma(z,Sy),\rho(y,TRSy),\rho(y,TRz),d(Rz,RSy)\}
\sigma(STRz,STx) \leq cmax\{\sigma(z,STx),\sigma(z,STRz),d(x,Rz),\rho(Tx,TRz)\},
```

¹Department of Mathematics, University of Bacau, 5500 Bacau, Romania

44 V. Popa

for all x in X, y in Y and z in Z, where $0 \le c < 1$. Then RST has a unique fixed point u in X, TRS has a unique fixed point v in Y, and STR has a unique fixed point w in Z. Further, Tu = v, Sv = w and Rw = u.

Theorem 3. [2] Let (X,d), (Y,ρ) and (Z,σ) be complete metric spaces and suppose that T is a mapping of X into Y,S is a mapping of Y into Z, and R is a mapping of Z into X satisfying the inequalities

$$\begin{split} d^2(RSy,RSTx) &\leq & cmax\{d(x,RSy).\rho(y,Tx);\rho(y,Tx).d(x,RSTx);\\ &d(x,RSTx).\sigma(Sy,STx);\sigma(Sy,STx).d(x,RSY)\} \\ \rho^2(TRz,TRSy) &\leq & cmax\{\rho(y,TRz).\sigma(z,Sy);\sigma(z,Sy).\rho(y,TRSy);\\ &\rho(y,TRSy).d(Rz,RSy);d(Rz,RSy).\rho(y,TRz)\} \\ \sigma^2(STx,STRz) &\leq & cmax\{\sigma(z,STx).d(x,Rz);d(x,Rz).\sigma(z,STRz);\\ &\sigma(z,STRz).\rho(Tx,TRz);\rho(Tx,TRz).\sigma(z,STx)\} \end{split}$$

for all x in X, y in Y and z in Z, where $0 \le c < 1$. If one of the mappings R, S, T is continuous, then RST has a unique fixed point u in X, TRS has a unique fixed point v in Y and STR has a unique fixed point v in Z. Further, Tu = v, Sv = w and Rw = u.

In this paper, new generalizations of Theorem 1-3 are proved for the mappings satisfying three implicit relations on three complete metric spaces.

2. Implicit relations

Let F_4 be the set of all continuous functions $F: R_+^4 \to R$ such that there exists $h \in [0,1)$ having the following property: for every $u \geq 0$, $v \geq 0$ with

- a) $F(u, v, u, 0) \le 0$ or
- b) $F(u, v, 0, u) \leq 0$ we have $u \leq hv$.

Ex. 1. $F(t_1, ..., t_4) = t_1 - kmax\{t_2, t_3, t_4\}$ where $k \in [0, 1)$.

Let u > 0 and $F(u, v, u, 0) = u - kmax\{u, v, 0\} \le 0$. If $u \ge v$ then $u(1-k) \le 0$, a contradiction.

Thus u < v and $u \le hv$, where $h = k \in [0, 1)$. If $F(u, v, 0, u) \le 0$ then $u \le hv$. If u = 0 then $u \le hv$.

Ex. 2. $F(t_1, ..., t_4) = t_1 max\{t_3, t_4\} - ct_2 max\{t_2, t_3\}$ where $c \in [0, 1)$.

Let u > 0 and $F(u, v, u, 0) = umax\{u, 0\} - cvmax\{u, 0\} \le 0$, then $u^2 - cu \le 0$ which implies $u \le hv$, where $h = c \in [0, 1)$. Similarly, $F(u, v, 0, u) \le 0$ implies $u \le hv$.

Ex. 3. $F(t_1, \ldots t_4) = t_1^3 - (at_1^2t_2 + bt_1t_3t_4 + ct_2t_3t_4)$ where $a, b, c \ge 0$ and a < 1.

Let u > 0 and $F(u, v, u, 0) = u^3 - au^2v \le 0$. Then $u \le hv$ where $h = a \in [0, 1)$. If u = 0 then $u \le hv$. Similarly, $F(u, v, 0, u) \le 0$ implies $u \le hv$. Let F_5 be

the set of all continuous function $F: R^5_+ \to R$ such that there exists $h \in [0,1)$ having the following property: for every $u \ge 0$, $v \ge 0$ with a') $F(u,v,u,0,w) \le 0$ or b') $F(u,v,0,u,w) \le 0$ we have $u \le hmax\{v,w\}$.

Ex. 4. $F(t_1, ..., t_5) = cmax\{t_2, ..., t_5\}$ where $c \in [0, 1)$.

Let u > 0 and $F(u, v, u, 0, w) = u - cmax\{u, v, w\} \le 0$. If $u \ge max\{v, w\}$ then $u(1-c) \le 0$, a contradiction. Thus $u < hmax\{v, w\}$ where $h = c \in [0, 1)$. If u = 0 then $u \le hmax\{v, w\}$. Similarly, if $F(u, v, 0, u, w) \le 0$ we have $u \le hmax\{v, w\}$.

Ex. 5. $F(t_1, ..., t_5) = t_1^2 - cmax\{t_4t_2, t_2t_3, t_3t_5, t_5t_4\}$ where $0 \le c < 1$.

Let u > 0 and $F(u, v, u, 0, w) = u^2 - cmax\{0, uv, uw\} \le 0$. If $u \ge max\{v, w\}$ then $u^2(1-c) \le 0$, a contradiction. Then $u < max\{v, w\}$ and $u \le hv$ where $h = c^{\frac{1}{2}} \in [0, 1)$. If u = 0 then $u \le hmax\{v, w\}$. Similarly, if $F(u, v, 0, u, w) \le 0$ we have $u < hmax\{v, w\}$.

Ex. 6. $F(t_1, ..., t_5) = t_1^3 + t_1^2 - (at_1t_2 + bt_1t_3 + ct_1t_4 + dt_5^2)$ where $0 \le a + b + c + d < 1$.

Let u > 0 and $F(u, v, u, 0, w) = u^3 + u^2 - (auv + bu^2 + dw^2) \le 0$ which implies $u^2 - (auv + bu^2 + dw^2) \le 0$. If $u \ge max\{v, w\}$ than $u^2(1 - a - b - d) \le 0$, a contradiction. Then, $u < max\{v, w\}$ and $u \le hmax\{v, w\}$ where $h = \sqrt{a + b + c + d} \in [0, 1)$. If u = 0 then $u \le hmax\{v, w\}$. Similarly if F(u, v, 0, u, w) < 0 then $u < hmax\{v, w\}$.

3. Main results

Theorem 4. Let $(X,d),(Y,\rho)$ and (Z,σ) be complete metric spaces and suppose T is a mapping of X into Y, S is a mapping of Y into Z and R is a mapping of Z into X, satisfying the inequalities

(1)
$$F(d(RSy, RSTx), \sigma(Sy, STx), d(x, RSTx), d(x, RSy)) \le 0$$

(2)
$$G(\rho(TRz, TRSy), d(Rz, RSy), \rho(y, TRSy), \rho(y, TRz)) \le 0$$

(3)
$$H(\sigma(STx, STRz), \rho(Tx, TRz), \sigma(z, STRz), \sigma(z, STx)) \le 0$$

for all x in X, y in Y and z in Z, where $F, G, H \in F_4$. If one of the mappings R, S, T is continuous, then RST has a unique fixed point u in X, TRS has a unique fixed point v in Y, and STR has a unique fixed point v in Z. Further, Tu = v, Sv = w, Rw = u.

Proof. Let x_0 be an arbitrary point in X. Define the sequence $\{x_n\}$, $\{y_n\}$ and $\{z_n\}$ in X, Y and Z, respectively, by

$$x_n = (RST)^n x_0, y_n = Tx_{n-1}, z_n = Sy_n \text{ for } n = 1, 2, \dots$$

Applying the inequality (1) for $y = y_n$ and $x = x_n$ we have

$$-F(d(x_n, x_{n+1}), \sigma(z_n, z_{n+1}), d(x_n, x_{n+1}), 0) < 0$$

which implies by (a) that

$$(4) d(x_n, x_{n+1}) \leq h_1 \sigma(z_n, z_{n+1})$$

where $h_1 \in [0,1)$. Applying the inequality (3) for $x = x_{n-1}$ and $z = z_n$ we have

$$H(\sigma(z_n, z_{n+1}), \rho(y_n, y_{n+1}), \sigma(z_n, z_{n+1}), 0) < 0$$

which implies by (a) that

(5)
$$\sigma(z_n, z_{n+1}) < h_3 \rho(y_n, y_{n+1})$$

where $h_3 \in [0,1)$. Applying the inequality (2) for $z=z_n$ and $y=y_n$ we have

$$G(\rho(y_n, y_{n+1}), d(x_{n-1}, x_n), \rho(y_n, y_{n+1}), 0) < 0$$

which implies by (a) that

(6)
$$\rho(y_n, y_{n+1}) < h_2 d(x_{n-1}, x_n)$$

where $h_2 \in [0, 1)$.

Now it follows from the inequalities (4), (5) and (6) that

$$d(x_n, x_{n+1}) \le h_1 \sigma(z_n, z_{n+1}) \le h_1 h_3 \rho(y_n, y_{n+1}) \le \ldots \le (h_1 h_2 h_3)^n d(x_0, x_1)$$

Since $0 \le h_1 h_2 h_3 < 1, \{x_n\}, \{y_n\}, \{z_n\}$ are Cauchy sequences with the limits u, v, w in X, Y and Z, respectively. Now suppose that S is continuous. Then

$$\lim_{n\to\infty} Sy_n = \lim_{n\to\infty} z_n$$

and so

$$Sv = w$$

Applying the inequality (1) we now have

$$F(d(RSv, x_{n-1}), \sigma(Sv, z_n), d(x_{n-1}, x_n), d(x_{n-1}, RSv)) \leq 0.$$

Letting n tend to infinity, it follows

$$F(d(RSv, u), \sigma(Sv, w), 0, d(u, RSv)) \leq 0.$$

Using equation (7) we have

$$F(d(RSv, u), 0, 0, d(u, RSv)) \leq 0.$$

By (b) follows that d(u, RSv) < h.0 which implies by (7) that

$$(8) u = RSv = Rw$$

Applying the inequality (2) we have

$$G(\rho(Tu, y_{n+1}), d(u, x_n), \rho(y_n, y_{n+1}), \rho(y_n, TRw)) \le 0.$$

Letting n tend to infinity, it follows that

$$G(\rho(Tu, v), 0, 0, \rho(v, Tu)) \leq 0.$$

By (b) follows that

$$(9) Tu = v.$$

Now it follows from the equations (7), (8) and (9)

$$TRSv = TRw = Tu = v,$$

 $STRw = STu = Sv = w,$
 $RSTu = RSv = Rw = u.$

The same results of course will hold if R or T is continuous instead of S. We now prove the uniqueness of the fixed point u. Suppose that RST has a second fixed point u'. Then using the inequality (1) we have

$$F(d(RSTu,RSTu'),\sigma(STu',STu),d(u,RSTu),d(u,RSTu') \leq 0$$

$$F(d(u,u'),\sigma(STu,STu'),0,d(u,u')) \leq 0.$$

By (b) we have

(10)
$$d(u, u') \leq h_1 \sigma(STu, STu').$$

Further, using the inequality (3) we have successively:

$$H(\sigma(STRSTu, STu'), \rho(Tu', TRSTu), 0, \sigma(STu, STu')) \le 0$$

 $H(\sigma(STu, STu'), \rho(Tu', Tu), 0, \sigma(STu, STu')) < 0.$

By (b) we have

(11)
$$\sigma(STu, STu') \le h_3 \rho(Tu, Tu').$$

Finally, using the inequality (2), we have

(12)
$$\rho(Tu, Tu') \leq h_2 d(u, u').$$

By (10), (11) and (12) we have

$$d(u,u') \leq (h_1h_2h_3)d(u,u')$$

which implies u = u'. The fixed point u of RST is therefore unique. Similarly, it can be proved that v is the unique fixed point of TRS and w is the unique fixed point of STR. This completes the proof of the theorem.

Corollary 1. Theorem 1.

Proof. It follows from Theorem 4 and Ex. 1.

Theorem 5. Let (X,d), (Y,ρ) , (Z,σ) be complete metric spaces and suppose T is a mapping of X into Y,S is a mapping of Y into Z, and R is a mapping of Z into X, satisfying the inequalities

- (1') $F(d(RSy, RSTx), \rho(y, Tx), d(x, RSTx), d(x, RSy), \sigma(Sy, STx)) < 0$
- (2') $F(\rho(TRz, TRSy), \sigma(z, Sy), \rho(y, TRSy), \rho(y, TRz), d(Rz, RSz)) \leq 0$
- (3') $F(\sigma(STx, STRz), d(x, Rz), \sigma(z, STRz), \sigma(z, STx), \rho(Tx, TRz)) \leq 0$

for all x in X, y in Y and z in Z where $F \in F_5$. If one of the mappings R, S, T is continuous, then RST has a unique fixed point u in X, TRS has a unique fixed point v in Y, and STR has a unique fixed point w in Z. Further, Tu = v, Sv = w and Rw = u.

Proof. Let x_0 be an arbitrary point in X and define the sequence $\{x_n\}, \{y_n\}, \{z_n\}$ in X, Y and Z, respectively, as in the proof of Theorem 4. Applying the inequality (2') for $z = z_{n-1}$ and $y = y_n$ we have

$$F(\rho(y_n, y_{n+1}), \sigma(z_{n-1}, z_n), \rho(y_n, y_{n+1}), 0, d(x_{n-1}, x_n)) \le 0$$

which by (a') implies that

(4')
$$\rho(y_n, y_{n+1}) < hmax\{d(x_{n-1}, x_n), \sigma(z_{n-1}, z_n)\}.$$

Applying the inequality (3') for $x = x_{n-1}$ and $z = z_n$ we have

$$F(\sigma(z_n, z_{n+1}), d(x_{n-1}, x_n), \sigma(z_n, z_{n+1}), 0, \rho(y_n, y_{n+1})) < 0$$

which by (a') and the inequality (4') implies that

Applying the inequality (1') for $y = y_n$ and $x = x_n$ we have

$$F(d(x_n, x_{n+1}), \rho(y_n, y_{n+1}), d(x_n, x_{n+1}), 0, \sigma(z_n, z_{n+1})) \le 0$$

which by (a') and the inequality (4') and (5') implies that

(6')
$$d(x_n, x_{n+1}) \leq hmax\{\rho(y_n, y_{n+1}), \sigma(z_n, z_{n+1})\} \\ \leq hmax\{d(x_n, x_{n-1}), \sigma(z_{n-1}, z_n)\}.$$

Now it follows easily by induction on using the inequalities (4'), (5') and (6') that

$$d(x_n, x_{n+1}) \le h^{n-1} \max\{d(x_1, x_2), \sigma(z_1, z_2)\}, \\ \rho(y_n, y_{n+1}) \le h^{n-1} \max\{d(x_1, x_2), \sigma(z_1, z_2)\}, \\ \sigma(z_n, z_{n+1}) \le h^{n-1} \max\{d(x_1, x_2), \sigma(z_1, z_2)\}$$

Since $0 \le h < 1$, it follows that $\{x_n\}, \{y_n\}, \{z_n\}$ are Cauchy sequences with the limits u, v and w in X, Y and Z, respectively.

Now suppose that S is continuous. Then

$$\lim_{n\to\infty} Sy_n = \lim_{n\to\infty} z_n$$

and so

$$(7') Sv = w$$

Applying the inequality (1') for y = v and $x = x_n$ we now have

$$F(d(RSv, x_{n+1}), \rho(v, Tx_n), d(x_n, x_{n+1}), d(x_n, RSv), \sigma(Sv, STx_n)) \le 0.$$

Letting n tend to infinity it follows

which by (b') implies that d(RSv, u) = 0 and so

$$(8') Rsv = u$$

Using the equation (7') this gives us

$$(9') Rw = u$$

Using the equation (8') and the inequality (2') for z = Sv and $y = y_n$, we have

$$F(\rho(Tu, y_{n+1}), \sigma(Sv, Sy_n), \rho(y_n, TRSy_n), \rho(y_n, TRSv), d(RSv, RSy_n)) \le 0.$$

Letting n tend to infinity it follows

$$F(\rho(Tu,v),0,0,\rho(v,Tu),0) \leq 0$$

which by (b') implies that $\rho(Tu, v) = 0$ and so

$$(10') Tu = v$$

It follows from the equations (7'), (9') and (10') that

$$TRSv = TRw = Tu = v,$$

 $STRw = STu = Sv = w,$
 $RSTu = RSv = Rw = u.$

The same results of course hold if R or T is continuous instead of S.

We now prove the uniqueness of the fixed point u. Suppose that RST has a second fixed point u'. Then using the inequality (1') for y = Tu and x = u' we have

$$F(d(u,u'),\rho(Tu,Tu'),0,d(u,u'),\sigma(STu,STu'))\leq 0$$

which by (b') implies that

(11')
$$d(u, u') \leq hmax\{\rho(Tu, Tu'), \sigma(STu, STu')\}.$$

Further, using the inequality (2') for z = STu and y = Tu' we have

$$F(\rho(Tu, Tu'), \sigma(STu, STu'), 0, \rho(Tu, Tu'), d(u, u')) < 0$$

which by (b') implies that

(12')
$$\rho(Tu, Tu') \le hmax\{\sigma(STu, STu'), d(u, u')\}.$$

The inequalities (11') and (12') imply that

(13')
$$d(u, u') < h\sigma(STu, STu').$$

Finally, using the inequality (3'), we have

$$F(\sigma(STu, STu'), d(u, u'), 0, \sigma(STu, STu'), \rho(Tu, Tu')) < 0$$

which by (b') implies

(14')
$$\sigma(STu, STu') < hmax(\{d(u, u'), \rho(Tu, Tu')\}.$$

It now follows from the inequalities (12'), (13') and (14') that

$$d(u, u') \le h\sigma(STu, STu') \le h^2\sigma(STu, STu')$$

and so u=u', since h<1. The fixed point u of RST is therefore unique. Similarly, it can be proved that v is the unique fixed point of TRS and w is the unique fixed point of STR. This completes the proof of Theorem.

Corollary 2. Theorem 2.

Proof. It follows from Theorem 5 and Ex. 4.

Corollary 3. Theorem 3.

Proof. It follows from Theorem 5 and Ex. 5.

References

- [1] Nung, N.P., A fixed point theorem in three metric spaces, Math. Semin. Notes, Kobe Univ. 11 (1983), 77-79.
- [2] Jain, R.K., Shrivastava, A.K., Fisher, B., Fixed points on three complete metric spaces, Novi Sad J. Math. 27,1 (1997), 27-35.

Received by the editors January 4, 1999.