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TWO GENERAL FIXED POINT THEOREMS ON
THREE COMPLETE METRIC SPACES

Valeriu Popa !

Abstract. Two general fixed point theorems on three complete metric
spaces which generalize the results from [1] and [2] for mappings satisfying
implicit relations, are proved.
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1. Introduction

The following fixed point theorem was proved by Nung [1] and Jain, Shri-
vastava and Fisher [2].

Theorem 1. [2] Let (X, d),(Y, p) and (Z, o) be complete metric spaces and sup-
pose T is a mapping of X intoY, S is a mapping of Y into Z and R is a mapping
of Z into X satisfying the inequalities

d(RSy, RSTz).maz{d(z, RSy),d(z, RSTz)} <
ca(Sy, STz).maz{s(Sy, STz),d(z, RSTz)}

p(TRz, TRSy).maz{p(y, TRz), p(y, TRSy)} <
cd(Rz, RSy).maz{d(Rz, RSy), p(y, TRSy)}

a(STz, STRz).maz{o(z,STz),0(z,STRz)} <
cp(Tz, TRz), maz{p(Tz,TRz),0(z, STRz)}

forallz in X,y inY, z in Z, where 0 < ¢ < 1. If one of the mappings R, S,T is
continuous, then RST has a unique fized point u in X, TRS has a unique fized
point v in'Y, and STR has a unigue fized point w in Z. Further,Tu=1v, Sv =
wand Rw = u.

Theorem 2. [1] Let (X,d), (Y,p) and (Z,0) be complete metric spaces and
suppose T a continuous mapping of X into Y, S is a conlinuous mapping of Y
into Z and R is a continuous mapping of Z into X, satisfying the inequalities

d(RSTz, RSy) < cmaz{p(y, Tz),d(z, RSTz),d(x, RSy),o(Sy, STz)}
p(TRSy, TRz) < cmaz{c(z, Sy), p(y, TRSY), p(y, TRz),d(Rz, RSy)}
d(STRz,STz) < emaz{o(z,STz),0(z, STRz),d(z, Rz), p(Tz, TRz)},

1Department of Mathematics, University of Bacau, 5500 Bacau, Romania



44 V. Popa

forallz in X, y inY and z in Z, where 0 < ¢ < 1. Then RST has a unique
fized point u in X, TRS has a unique fized point v in Y, and STR has a unique
fized point w in Z. Further, Tu = v, Sv = w and Rw = u.

Theorem 3. [2] Let (X,d), (Y,p) and (Z,0) be complete metric spaces and
suppose that T is a mapping of X into Y, S is a mapping of Y into Z, and R is
a mapping of Z into X satisfying the inequalities

d*(RSy, RSTz) < cmaz{d(z, RSy).p(y, Tz); p(y, Tz).d(z, RSTz);
d(z, RSTz).0c(Sy, STz); o(Sy, STx).d(x, RSy)}

p*(TRz, TRSy) < cmaz{p(y, TRz).0(z, Sy); o(z, Sy).p(y, TRSy);
p(y, TRSy).d(Rz, RSy); d(Rz, RSy).p(y, TRz)}

0?(STz,STRz) < cmaz{o(z,STz).d(z, Rz);d(z, Rz).0(z, STRz);
a(z, STRz).p(Tx, TRz); p(Tx,TRz).0(z,STz)}

forallz in X, yinY and z in Z, where 0 < ¢ < 1. If one of the mappings
R, S, T is continuous, then RST has a unique fized point u in X, TRS has a
unique fized point v in Y and STR has a unique fized point w in Z. Further,
Tu =v, Sv = w and Rw = u.

In this paper, new generalizations of Theorem 1-3 are proved for the map-
pings satisfying three implicit relations on three complete metric spaces.

2. Implicit relations

Let F; be the set of all continuous functions F : R} — R such that there
exists h € {0,1) having the following property: for every u > 0, v > 0 with
a) F(u,v,u,0) < 0or
b) F(u,v,0,u) <0

we have u < hv.

Ex. 1. F(tl, .. .,t4) = tl - kma:c{tz,t3,t4} where k € [0, 1)

Let u > 0 and F(u,v,u,0) = u—kmaz{u,v,0} < 0. If u > v then u(1-k) <
0, a contradiction.

Thus v < v and u < hv, where h = k € [0,1). If F(u,v,0,4) < 0 then
u < hv. If u =0 then u < ho.

Ex. 2. F(ty,...,t4) = tymaz{ts, t4} — ctymaz{t,y,ts} where c € [0,1) .

Let u > 0 and F(u,v,u,0) = umaz{u, 0}~cvmaz{u, 0} <0, then u?—cu < 0
which implies u < hv, where h = ¢ € [0, 1). Similary, F(u,v,0,u) < 0 implies
u < ho.

Ex. 3. F(t1,...t4) = t5 — (atit; + bt1tsts + ctatsts) where a,b,c > 0 and
a <1l

Let u > 0 and F(u,v,u,0) = u? — au®v < 0. Then u < hv where h = a €
[0,1). If u = 0 then u < hv. Similary, F(u,v,0,u) < 0 implies « < hv. Let F be
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the set of all continuous function F : R}, — R such that there exists h € [0, 1)
having the following property: for every u > 0, v > 0 with a’) F(u, v, u,0, w) < 0
or b') F(u,v,0,u,w) < 0 we have u < hmaz{v, w}.

Ex. 4. F(t1,...,15) = crmaz{ts,...,t5} where ¢ € [0, 1).

Let w > 0 and Fu,v, u,0,w) = uv — crnaz{u, v,w} < 0. If v > maz{v, w}
then u(1 — ¢) < 0, a contradiction. Thus u < hmaz{v, w} where h = ¢ € [0, 1).
If u = 0 then u < hmaz{v,w}. Similary, if F(u,v,0,u,w) < 0 we have u <
hmaz{v,w}.

Ex. 5. F(t1,...,t5) = 12 — cmaz{t4ts, tats, tats, tsls} where 0 < c < 1.

Let u > 0 and F(u,v,u,0,w) = u?—crmaz{0, uv, uw} < 0. If u > maz{v, w}
then u?(1 — ¢) < 0, a contradiction. Then u < maz{v, w} and u < hv where
h=c%* €[0,1). If u=0 then u < hmaz{v,w}. Similary, if F(u,v,0,u,w) <0
we have u < hmaz{v,w}.

Ex. 6. F(t1,...,t5) = t§ + 12 — (at1ts + b1ty + ctits + dt2) where 0 <
a+b+e+d<1.

Let u > 0 and F(u,v,u,0,w) = u® + u? — (auv + bu® + dw?) < 0 which
implies u? — (auv + bu? + dw?) < 0. If u > maz{v,w} than v?(1 —a ~b—
d) < 0, a contradiction. Then, v < maz{v,w} and u < hmaz{v, w} where
h=+a+b+c+d € [0,1). If u =0 then v < hmaz{v,w}. Similary if
F(u,v,0,u,w) <0 then u < hmaz{v, w}.

3. Main results
Theorem 4. Let (X,d),(Y, p) and (Z, ) be complete metric spaces and suppose

T is a mapping of X into Y, S is a mapping of Y into Z and R is a mapping
of Z into X, satisfying the inequalities

(1) F(d(RSy, RSTz),o(Sy, STx),d(z, RSTz),d(z, RSy)) <0
(2) G(p(TRz, TRSy),d(Rz, RSY), p(y, TRSy), p(y, TRz)) < 0
(3) H(o(STz,STRz), p(Tz,TRz),0(z, STRz),0(z,5Tz)) <0

forallz in X, y inY and z in Z, where F,G,H € Fy. If one of the mappings
R, S, T is continuous, then RST has a unique fized point u in X, TRShas a
unique fired point v in Y, and STR has a unique fized point w in Z. Further,
Tu=mwv,85v =w, Rw=u.

Proof. Let 2 be an arbitrary point in X. Define the sequence {z,}, {yn} and
{zn} in X,Y and Z,respectively, by

zn = (RST)"zo, yn = Tan_1, 2n = Syn forn=1,2,....

Applying the inequality (1) for y = y, and z = z, we have
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—F(d(l’n, $n+1),0'(2n, Zn+1),d($n, $n+1), 0) S 0

which implies by (a) that

(4) d(zn, Zn41) < h10(2ny 2n41)

where hq € [0,1). Applying the inequality (3) for £ = 2, and z = z, we have
H(o(2n, 2n41)s P(Un> Yn+1): (20, 2041),0) < 0

which implies by (a) that

(5) U(Zm Zn+1) < hap(yn, yn+1)

where hs € [0,1). Applying the inequality (2) for z = z, and y = y, we have
G(p(Yns Yn+1), d(Tn—1,Zn), P(Yn) Yn+1),0) < 0

which implies by (a) that

(6) P(Yn, Yn+1) < had(@n-1, 7n)

where hy € [0,1).
Now it follows from the inequalities (4), (5) and (6) that
d(zn, Ent1) < h10(2n; 2n41) < h1hap(yn, yns1) < ... < (h1hghs)"d(zo, 21)

Since 0 < hihohs < 1,{z,}, {yn}, {#n} are Cauchy sequences with the limits
u,v,w in X, Y and Z, respectively. Now suppose that S is continuous. Then

lim Sy, = lim z,
n—+00 n-— 00

and so

(M Sv=w
Applying the inequality (1) we now have
F(d(RSv,zn_1),0(Sv, zp),d(Zn-1, Zn), d(zn-1, RSv)) < 0.
Letting n tend to infinity, it follows
F(d(RSv,u),o(Sv,w),0,d(u, RSv)) < 0.
Using equation (7) we have

F(d(RSwv,u),0,0,d(u, RSv)) < 0.
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By (b) follows that d(u, RSv) < k.0 which implies by (7) that
(8) u = RSv = Rw '
Applying the inequality (2) we have
G(p(Tu, yn+1), d(tu, Zn), P(Yns Ynt1), P(Wn, TRw)) < 0.
Letting n tend to infinity,it follows that
G(p(Tu,v),0,0, p(v,Tu)) <0.

By (b) follows that
(9) Tu=v.

Now it follows from the equations (7), (8) and (9)

TRSv =TRw =Tu =,
STRw = STu = Sv = w,
RSTu = RSv = Rw = u.

The same results of course will hold if R or T is continuous instead of S.
We now prove the uniqueness of the fixed point u. Suppose that RST has a
second fixed point u'.Then using the inequality (1) we have

F(d(RSTu, RSTv'), o(STy', STu),d(u, RSTu),d(u, RST¢') <0
F(d(u,v'),0(STu, STu'),0,d(u,u')) <0.

By (b) we have
(10) d(u,u’) < hyo(STu, STu').

Further, using the inequality (3) we have successively:

H(o(STRSTu, STv'), p(Tw', TRSTu),0,0(STu,STu')) <0
H(o(STu, STY'), p(Tv', Tu),0,0(STu, STu')) < 0.

By (b) we have
(11) o (8Tu, STu') < hap(Tu, Tu').

Finally, using the inequality (2), we have
(12) p(Tu, Tu'}y < had(u, u').
By (10), (11) and (12) we have

d(u, ') < (hihzhs)d(u, ')

which implies u = /. The fixed point u of RST is therefore unique. Similary,
it can be proved that v is the unique fixed point of TRS and w is the unique
fixed point of ST R. This completes the proof of the theorem. |
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Corollary 1. Theorem 1.
Proof. It follows from Theorem 4 and Ex. 1. 0

Theorem 5. Let (X,d) , (Y,p) , (Z,0) be complete metric spaces and suppose
T is a mapping of X into Y, S is a mapping of Y into Z, and R is a mapping
of Z into X, satisfying the inequalities

(1) F(d(RSy, RSTz), p(y, Tx),d(z, RSTz),d(z, RSy),c(Sy, STz)) <0
(27 F(p(TRz, TRSy),0(z, Sy), p(y, TRSY), p(y, TRz),d(Rz, RSz)) <0
(3" F(o(STz,STRz),d(z, Rz),0(z,STRz),0(z, STx), p(Tz, TRz)) <0

forallz in X, yinY and z in Z where F € F5. If one of the mappings R, S, T
is continuous, then RST has a unique fized point u in X, TRS has a unique
Jized point v in Y, and STR has a unique fized point w in Z. Further, Tu = v,
Sv = w and Rw = u.

Proof. Let zq be an arbitrary point in X and define the sequence {z,}, {y.}, {2}
in X,Y and Z, respectively, as in the proof of Theorem 4. Applying the inequal-
ity (2') for 2 = 2,1 and y = y,, we have

F(p(yn, Yn+1)s 7(2n-1,20), P(Un, Yn+1), 0,d(Tp-1,20)) <0
which by (a’) implies that
(4) p(Yn, Yn41) < hmaz{d(za_1,2n),0(2n-1,7n)}-
Applying the inequality (3) for ¢ = 2,-; and z = z, we have
F(0(2n; 2n41), d(@n—1,2n), 0(2n, 2n41); 0, p(Yn; Yn41)) < 0
which by (a’) and the inequality (4') implies that

(5") o(2n, 2n41) < hmaz{d(zn-1,2n), P(Yn, Yn+1)}
< hmae{d(zn_1,2n),0(2n—1, 2n)}-

Applying the inequality (1) for y = y. and ¢ = z,, we have
F(d(:cna $n+l): p(yﬂ, yn+l)’ d(rﬂ’ 13n+1), 0, U(Zn’ zn+1)) <9
which by (a’) and the inequality (4’) and (5') implies that

(6’) d(£n7£n+l) < hmaw{p(ynayn+l)aU(zﬂ:zn+l)}
< hmaz{d(zn, Zn-1), 7(2n—1, 2n) }-

Now it follows easily by induction on using the inequalities (4'), (5’) and (6')
that

d(zn,2ny1) < B maz{d(zy, z3),0(z1, 22)},

P(Yn: Yn+1) < K" 'maz{d(zy, 22), 0 (21, 22)},

U(Zna 2n+1) < hn_lma:c{d(:cla :E‘Z)a o'(zb 22)}
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Since 0 < h < 1, it follows that {z,}, {yn}, {zn} are Cauchy sequences with
the limits u,v and w in X,Y and Z, respectively.
Now suppose that S is continuous. Then

i St = Ji
and so
(™ Sv = w
Applying the inequality (1') for y = v and # = z,, we now have
F(d(RSv, zn41), p(v, T2n),d(Zn, Tnt1), d(zn, RSv), 0 (Sv, STz,)) < 0.
Letting n tend to infinity it follows
F(d(RSv,u),0,0,d(RSv,u),0) <0
which by (¥') implies that d(RSv, u)} = 0 and so
(8) Rsv=u
Using the equation (7’) this gives us
(9" Rw=1u
Using the equation (8') and the inequality (2') for z = Sv and y = yn, we have
F(p(Tu, Yny1), o(Sv, Syn), p(Yn, TRSYs), p(yn, TRSv),d(RSv, RSy,)) < 0.
Letting n tend to infinity it follows
F(p(Tu,v),0,0, p(v, Tu),0) <0
which by (¥’) implies that p(Tu, v} = 0 and so
(109 Tu=v
It follows from the equations (7'), (9') and (10') that

TRSv=TRw =Tu =,
STRw = STu = Sv = w,
RSTu = RSv = Rw = u.

The same results of course hold if R or T is continuous instead of S.
We now prove the uniqueness of the fixed point u. Suppose that RST has a
second fixed point u’. Then using the inequality (1’) for y = Tu and = = u’ we

have
F(d(u,v'), p(Tu,Tv'),0,d(u, ), (STu, STu')) <0



50

which by (¥') implies that

(119 d(u,v’) < hmaz{p(Tu,Tv'), o (STu, STu')}.

Further, using the inequality (2’) for z = STu and y = Tw’ we have

F(p(Tu, Tv),0(STu, STY'),0, p(Tu, Tu'), d(u,v')) < 0

which by (V') implies that

(129 p(Tu, Tu') < hmaz{c(STu, STu'),d(u,v')}.

The inequalities (11') and (12') imply that

(13) d(u, v’y < ha(STu, STV').

Finally, using the inequality (3'), we have
F(o(STu,STv'),d(u,u'),0,0(STu, STu), p(Tu, Tu')) < 0

which by (b’) implies

(14") a(STu, STu') < hmaz({d(u, v}, p(Tu, Tu')}.

It now follows from the inequalities (12'), (13') and (14') that

d(u,u') < ha(§Tu, STu') < h*o(STu, STu')

V. Popa

and so u = u’ , since i < 1. The fixed point u of RST is therefore unique.
Similary, it can be proved that v is the unique fixed point of TRS and w is the

unique fixed point of ST R. This completes the proof of Theorem.
Corollary 2. Theorem 2.

Proof. It follows from Theorem 5 and Ex. 4.

Corollary 3. Theorem 3.

Proof. Tt follows from Theorem 5 and Ex. 5.
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