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BOUNDED SOLUTIONS OF ABSTRACT EQUATIONS

A. Ya. Dorogovtsev!

Abstract. The existence of bounded solutions for abstract ODE’s

2(t) = A(D)z(t) + f(t), tER
="(8) +b'(£) = A(De(t) + f(2), tER

and for abstract boundary problems for PDE

ur(t, x) — ug, (¢, z)
= A(t)u(t,z) +g(t,z), teR, x €[0,n]
u(t,0) =u(t,7) =0, tEeR;
[ us(t, T) + bui(t, z) — ult.(t, )
= A(t)u(t,z) + g(t,z), te R, 2 €[0,~]
u(t,0) =u(t,m) =0, teR

is considered. Here A is a periodic operator valued function, f is a
bounded on R Banach valued function and b € R.
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1. Existence of bounded solutions for ODE

Let (B, ||-|]) be a complex Banach space, 0 the zero element in B, and £(B)
the Banach space of bounded linear operators on B with the operator norm,
denoted also by the symbol |} - ||. For a B - valued function the continuity and
differentiability mean correspondingly the continuity and differentiability in the
B —norm. For an £(B) - valued function the continuity means the continuity in
the operator norm. For an operator A the sets ¢(A) and p(A) are its spectrum
and resolvent set, respectively. Set S = {z € C : |z| = 1}.

Let 7 > 0 and the function

A€ CR,L(B)); Alt+7)=A(t), teR

be given. With the function A is associated an operator valued function U :
R — L(B) which is the solution of the following problem

U'(t) = A@Q)U(t), t € R;
{ U0) =1I.
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Here [ is the identity operator.

Define
Co(R,B) :={f € C(R, B) | ||fllw := supser || f(8)il < +00};
Cl(R, B) := C(R, B) N Cy(R, B);

C3(R, B) :={f € C*(R, B) | ||flleo + If'le < +00}.

The first result is related to the following differential equation in a Banach space.
Theorem 1. Equation

(1) 2'(t) = A)a(t) + f(t), tER,

has a unique solution {z(t) : t € R} in CY{R,B) for everﬁlfunction fe
Cy(R, B) if and only if

(2) a(U(m)NS=0.
Before proving Theorem 1, we prove the following lemma from [1].

Lemma 1. Let D € L(B) be a fized operator. The following two statements
are equivalent,

(a) The equation
(3) z(n+ 1) = Dz(n)+y(n), neZ

has a unique bounded solution {(n) : n € Z} for every bounded sequence
{y(n) : neZ}.

(b)
aD)NS =0.

Proof. (a) implies (b). Let Ao € S and z € B. Let {z(n) : n € Z} be a unique
bounded solution of equation (3) which corresponds to the bounded sequence
{-A8z : ne€Z}. Put
u(n) ;= z(n)Ag", n€Z.
From formula (3), it is clear that the equation
dou(n+1)=Du(n)—2, n€Z
has a unique bounded solution {u(n) : n € Z} for every z € B. Consequently,

do(u(n+1) —u(n)) = D(u(n) —u(n—1)), n€Z.
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Thus u(n) = u(0) =: u for every n € Z. Therefore, given any element z € B,
there exists a unique element u € B such that

(A— Aol)u = z.

Thus by Banach theorem the operator A — Aol is invertible. (b) implies (a).
Let
o_:=c(A)N{z€ C||z| <1}, oy :=a(A)\o-

and P_, P, be the corresponding Riesz spectral projectors. It is easy to bhOW
that

0 -1
L:=3 [(DP-Y I+ D II(DPy)]| < +oo
7=0 j=—o0
where (DP_)° := P_, see [1], [5]. If {y(n) : n € Z} is a bounded sequence in

B, the sequence

z(n) =) G()y(n—1-3),

j€Z

where ( v
N DP_y, j>0
o= Uiy, 12l jez
is also bounded. Moreover, for every n € Z we have
Dz(n) = (DP- + DPy)z(n) =

0o -1

Z Yt y(n —1—5) = 3 (DPLYy(n—1-j) =

z(n+1) — P_y(n) — Pry(n) = z(n+ 1) — y(n).

Now let us prove that the solution {z(n) : n € Z} for equation (3) is
unique. Let {u(n) : n € Z} be a solution of equation (3) which corresponds to
{y(n) : n € Z}. Then the sequence

{v(n) := z(n) —u(n) : n€Z}

satisfies the equation
v(n+1)=Dv(n), n€Z
which is equivalent to the system )

{ v_(n+1)
vi(n+1)

(DP_)v_(n),
(DPy)vy(n); nel

with
v_(n) := P_v(n), vy(n):= Piv(n), n€Z.
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From this we have for m > 1

llo—(n)|| = H{(DP-)™v_(n —m)|| < ||(DP-)™||supsez |lv-(k)Il,
o+ ()| = [(DP+)"™ vy (n + m)|| < |[(DP1)~™||supgez |lv+ (k)]

Therefore, v_(n) =0 = v;(n), n € Z. Lemma 1 is proved. o

Proof of Theorem 1. Note that equation (1) is equivalent to the following one

(4) z(t) = U@RU~Y(s) /U Vf(s)ds, s<t.

If equation (1) has a unique solution z € C} (R, B) for every f € C(R, B),
then by (4) the following difference equation

z(n+1)=U(r)z(n) + v(n), n€eZ

has a unique bounded solution 2(n) = £(n7), n € Z for every bounded sequence
{v(n) | n € Z}. By Lemma 1 we have (2).

Suppose that condition (2) is satisfied and f € Cy(R, B). Let P_(Py) be
the Riesz spectral projectors corresponding to the part of the spectrum o (U(7))
which is inside (outside) S. For every ¢t € R define the element

+oco
z(t) := G(t, s)f(s)ds,
-0
where G is the Green function for equation (1)

L _JUQP-UNs), s<t;
G(t ) '—{ UEt;mU—l(s), s> t.

Applying the following well known properties of the operator valued function U

(4D
Uty =U(t —nr)U(r)"; .

U el s e ([ I4wld), o<t

we have
400
C = sup/ G2, 5)|| ds < -+oo.
[0,7] /-
Thus z is a bounded solution of (1). 0
Remarks.

1. Theorem 1 is a generalization of the following M. G. Krein theorem ([3], p
54) for A(t) = A € L(B).
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Theorem 2. Let A € L(B). Equation _
e'(t) = Az(t) + f(t), t€R
I3

has a unique solution z € C}(R, B) for every function f € Cy(R, B) if and only

if
O'(A) NiR = Q.

2. Theorem 1 can be proved in another way with the use of a dichotomy [2], n.
7.6.

The second result of this section is related to the following second-order
equation

(5) 2(1) + ba'(t) = A(®)z(t) + f(t), tER,

where b € R. Let us consider a Banach space B? of vectors equipped with term-
by-term linear operations and with a norm which is equal to the sum of norms
of coordinates. Let

= (50 ). 1= ). a=(7" ). en

where © is the zero operator. Then the following equation in B2
(6) y'(t) = Alt)y(t) +1(t), teR

is equivalent to the equation (5) in B. Let U be a unique solution of the following

problem in B?
{ U'(t) = A@)U(#), teR
U(0) =,

where I is the identity operator on B2. Note that
_(W v
U= ( i W
and that the elements V;, V;, are determined by the equations

VI'(t) + bVi(t) = A@VA(2), tER;
{ i(0)=6, V/(0)=1;

VI'(t) + bVa(t) = A(t)Va(t), te€R;
{ Va(0) = I, V;(0) = O;

Theorem 3. Suppose that a function A and a number b are such that
a(U(r)NnS =09.

Then for every function f bounded on R the equation (5) has a unique solution
z € C}(R, B).

Proof. To prove Theorem 3 we need only to apply Theorem 1 to equation (6).0
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2. Existence of bounded solutions of boundary value
problem for PDE

Let @ := R x [0, 7].

Definition 1. A B-valued function v = {u(t,z) : (t,z) € Q} is called bounded
if supg ||ul] < +oo.

Denote

Cd:={g: [0,7] = C|g(0) = g(m) = 0} N CY]0, 7]);
C3:={g: [0,7] = C | g¥)(0) = ¢¥) () =0, k =0,1,3} N C3([0,n]).

Given the functions ¢ € C3, A € C(R, L(B)) and f € Cs(R, B) let us consider
the following boundary problem for the heat equation

(7) u(t, 1’) - U;;,a;(t’ 1,‘)_: A(t)u(t, 1’) + f(t)g($)7 (t7 1,‘) €Q;
u(t,0) =u(t,7) =0, teR.
Theorem 4. Let A € C(R, L(B)) be a periodic function with the period 7.

(i) If for every ¢ € C} and f € Co(R, B) the boundary problem (7) has a
unique bounded solution u then the following condition is valid

(8) {e¥" 7H | k€N, a€[0,27]} C p(U(1)).

(i) If (8) is valid, g € C§ and f € Cy(R, B) then the boundary problem (7)

has a unique bounded solution u.

Proof. (i) Let k € N and o € R be given. Let u be a unique bounded solution
of the boundary problem (7) for the functions

¢(z) =sinke, z€[0,7; fE€CyR, B).

Define .
vk (t) ::/ u(t,z)sinkzdz, t e€R,
i

the last integral is the Riemann integral for a B—valued continuous function. It
can be easily checked that vy € C}(R, B). From (7) we have

(9) ok(t) = (A(t) - K*l)oe(t) + T/(1), tER

By Theorem 1 equation (9) has a unique solution {vi(t) : t € R} in C}(R, B)
for every function f € Cy(R, B) if and only if

o(Ue(1)) N S = B,
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where Uy is a solution of the following problem

{ & (1) = (A(t) — K2 I)Uk(t), t € R;
Ue(0) = I.
Note that

Ue(t) = U@R)e™ ", teR.

Therefore, we obtain
o(U(r)) N{e*" "+ | k€N, a €[0,27]} = 0.

(ii) Let be given the functions g € C3§ and f € Cy(R, B) and the condition
(8) be fulfilled. We again use Theorem 1. According to Theorem 1 equation (9)
for every k > 1 has a unique solution v(t), t € R, in C} (R, B).
The sequence {sinkz, z €[0,7] : k> 1} is complete in C}; thus we have

oo .
g(:c)zzgksinkx, z€[0,7]; {gx : k>1}CC,
k=1

where the series on the right-hand side uniformly converges on R.
Let us introduce the function

u(t, z) ka(t )9k sin kz, (t,z) € Q,

k=1

here

2 "

gk = —/ g(z)sinkede, k> 1.
T Jo

The series for u converges uniformly on Q. Hence u € C(Q, B). In what follows,

we need a more exact estimate for

sup ||vk (2)1]
teR

for large k. Let kg be a minimal natural number such that the set o(U (‘r)e""g")
lies inside {z € C : |z| < 1}. For every k > ko, in virtue of the properties of
the function Uy and representation of a solution for the equation (9), we have
the following estimate

C

sup ok 1] < 5

where

Cri= S WPl Wk ai= e ([ T4 ).
17 ; , (/o
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Similarly we obtain

oo
E vy, (t)gk sin kz

k=1

(A(t) - k*T)v (t)+1f(t))gk sin kz

S'qg

o
1l

1

Z (t)gk sin kz + F(t)g(z)

and
o0

E vt }sin kz,

where the series converge unlformly on Q).

To prove the uniqueness we remark that for every t € R elements {vi(t)gr | k£ >
1} are Fourier coefficients of u(t,-) € C*([0, 7], B). The Fourier coefficients and
the solutions of equations (9) are uniquely determined. m]

Now we shall establish sufficient conditions for the existence of boun-
ded solutions of the following boundary problem for the hyperbolic equation

uy(ts @) + buy(t, @) — ugy (b, )
(10) At)u(t, = )%rgw)f( , (6,2) €

u(t, 0) =u(t,

where g : [0,7] > C and f € Ci(R, B).
Denote by Vig, Vor the unique solutions of the following problems in B

{ () = (A(t) — b — k2 )Vig, tER;
Vie(0) = ©, V/(0)=1

and )
— bl — k2 1)V, tER,;

{ Var(t) = (A(?)
Vak (0)=0©

=
V‘zk(O) = I,

! V/
Uy := e 2k}
* ( Vie  Vag )
Definition 2. A B-valued function v = {u(t,z) : (t,z) € Q} is called a
bounded solution of problem (10) if

for kK € N. Let

sup [jull < +oo,  sup{juz|| < +oo.
Q Q
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Theorem 5. Suppose that
Ug>10(Uk (7)) NS = Q.

Then for every function g € C3 and f € Cy(R, B) the boundary problem (10)
has a unique bounded solution.

Proof. The proof is analogous to the one of Theorem 3. Let g € C§ and
f € C(R, B) be given. Then

g(z) = ng sinkz, =€ [0,n].
k=1
Define .
v (t) = / u(t,z)sinkedz, teR, keN.
0

It follows from Theorem 3 that the following equation
W (1) + boj (1) = (A() — K Due(t) + SS(1), LtER

has a unique solution vx € CZ(R, B), k > 1.
The function

ut,z) := ka (t)grsinkz, (t,z)€Q

k=1

is a unique bounded solution of the problem (10). O
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