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ON SET-VALUED NON-BOOLEAN FUNCTIONS
Ratko Tosié!, Lidija Comié?

Abstract. In the set of functions F': P"(r) = P(r) the subset of Boolean
functions is not complete. We study one way of partitioning the defini-
tion domain of a set—valued function F' : P*(r) — P(r) into equivalence
classes with respect to an equivalence relation generated by F' so that on
these classes exists a Boolean function f equal to F, and investigate this
equivalence relation for some values of n and r.
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1. Introduction

Let r = {0,1,...,» — 1}, » > 1, and let P(r) be the set of subsets of r.
Then (P(r),d,r,U,N,”) is Boolean algebra. There are 272" set-valued functions
F : P*(r) = P(r), and only 2"%" of them are Boolean.

Let & denote the symmetric difference over P(r). It is well known that a
function F : P*(r) — P(r) is Boolean if and only if it can be represented in the

form
n 1,2,...,n

F(X1yo Xn) = Ao® Y Y AiyinXiyonXi,
Mm=1143,im
for all Xq,..., X,,€P(r), where Ag and A;, ;- are constants of P(r), and the
sum is extended over all () subsets {i1,...,im} of m distinct indices from the
set {1,...,n}. The coeflicients Ag and A;,..;,, are uniquely determined by F.
The following property of Boolean functions, given in [7], is the generalization
of the results of McKinsey and Scognamiglio.

Theorem 1.1. If f : P*(xr) — P(r) is a Boolean function then

s

f(Xla---aXn)®f(yl,"'>yﬂ)g (X,‘@Y.‘)

i=1

forall X = (Xy,..,X,), Y = (Y1,.., Y,) € P"(r).
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Proof. Since f is Boolean, it can be represented in the form

1,...,n

f(X11X2a"'a AOEB Z Z AH z1 Xim.?
m=1iy,.. 1m
so that
f(XlaXZ"")Xﬂ)@f(YlaYZa"‘ Z Z An i Xim@qufl---Yvim)-
m=141,. 8,

For an arbitrary term of this sum we have

A; (Xil"'Xim@Y;Tr“Yim) C X, ..Xi

T1eedm T

© Y. Y, =

Xil---Xivail---Yim U X,'l...Xiva,'l...Y;'m =

Xil---Xi,,.(Y u. UY;".) (Xilu---UXim)YYilu-)/i =

m

XXYUUXXYUXYYUUXYYC

tm

X, VU UX:, Vi UXL Y, U UX. Y,

tm

=Xy $Y U U(X, a1, C

m zm

n

(X18M)U..U(X, aY,) = J(Xi oY)
i=1
7
Every term is contained in |J(X; & Y;), so

i=1

i=1
2. The equivalence relation generated by a set-valued func-
tion
Definition 2.1. Let X = (X1,..,.X,), ¥ = (Y1,...Y,) € P*(r). Then
(X150, Xn) ~p (Y1, .-, Y0) if

F(X1,00 X)) ® F(Wh, o Wa) € (X3 6 W)

-

1

-
Il

1s equivalent to

F(Y1,..,Y,) @ F(Wy,...,W,) C

C3

(Y@W)

1=

for every W = (W, ..., W,) € P*(r), and [X|p denotes the set of all Y such
that X ~p Y.

-

Relation ~p is obviousely an equivalence relation on P"(r).
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Theorem 2.1. Let F : P*(r) — P(r). For every element X = (X1,...,Xn) €
P (r) there exists a Boolean function fx : P"(r) — P(r) which coincides with
F on [X]p. This Boolean function is given by

fxU, U= | F(,.oYa)[Yi@Us or
Ye[X]r i=1
for every U = (Uy, ..., Uy,) € P™(x).
Proof. Let U = (Uy,...,Uy,) € [X]F. Then

fx (U, Up) = F(Uy,..,U)U | F(Y1,.Y, ﬂ Y;oU ar

YE(X]p
Y #U

Since (Un, ..., Up) ~r (Y1, ..., Ys), for every (Y1,...,Y,) € [X]F we have

C:

F(Uy...U))® F",...Y,) C | J(U; 8 Y3),
i=1
ie. .
U:ieY;&r)C F(Uy,....Us) ® F(Y1,...,Y,) &,
i=1
(by De Morgan laws, A®r = A and A C B = B C A). By intersecting both
sides of this inequality with F(Y1,...,Y,) for every Y € [X]r,Y # U we get
F(Yy, .. Yo)[(UiaeYier) C
=1
F(Yl, ...,Yn)(F(Ul, cery Un) b F(Yl, ceny Yn) 43 l’) =
F(Yl, . Yn)F(Ul, ey Un) & F(Yl, . Yn) & F(Yl, ...,Yn) =
F(1,.., Y )F(l,..,U,) C F(Uy, ..., Uy),
so that "
U F,-Y) (Y@ Ui &1) C F(Uy, ..., Un),
YE[X]F =1
Y #U
and fx (Ui, ..., Un) = F(Uy,...,Uy) for every (Uy,...,Uy,) € [X]p. a

For X = (X1,...,Xs) € P"(r) we introduce the collection of sets

n

Qr(X) = {(Wi, ..., W) € P"(r)|F(X1, ..., Xn)®F (W1, ..., Wy) C | J(X;oWi)}.

i=1
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Then X ~p Y if and only if Qr(X) = Qr(Y). A function F is Boolean if the
relation ~p has one equivalence class.

Further next we investigate this relation for some values of n and 7.

case r =1

In this case the set P(r) is isomorphic to the two-element Boolean algebra
B3, P*(r) is isomorphic to B} so that every function F : P*(1) — P(1) is
Boolean and has one equivalence class.

casen=1,r=2

This case is studied in [6], and the following results are obtained:

nurnber of classes | nurnber of functions with n classes

1 16
2 16
3 128
4 96

casen=1,r=3
By using the program given in Appendix we obtain the following results:

number of classes | number of functions with n classes
1 64
1024
5504
34880
165888
779520
3386880
12403456

o =1 & O bW

casen =2, r =2

Let the element (X, X;) from P(2) x P(2) = P({0,1}) x P({0,1}) be
represented by an integer j between 0 and 15 such that in the binary rep-
resentation of j the first two digits correspond to the characteristic vector of
the set X7, and the last two digits correspond to the characteristic vector of
the set X;. So, for example, the binary representation of the number 11 is
1011 =1.2340-2241-2'4+1-2% The first two digits, 10, determine the
characteristic vector (1,0) of the set {1}, and the last two digits, 11, determine
the characteristic vector (1,1) of the set {0,1}, and j = 11 corresponds to the
ordered pair ({1}, {0,1}).

There are 232 functions F : P(2) x P(2) — P(2), and among them only 256
generate the equivalence with one class.

In the sequel, we make use of Table 1, in which 1 in row ¢ and column j
denotes that the element (X;, X3) corresponding to the row ¢ belongs to the
collection Qp of the element (Y7,Y2) that corresponds to column j and vice
versa for any function F : P(2) x P(2) — P(2), because for those elements we



“in set-valued non-Boolean functions 83

2
lave (X1$Y1)U(X2$Y2) =2 = {0, ].}, and F(Xl, Xz)GBF(Yl, Yz) g U (X,@Y;)
i=1

regardless of the values of function F.

01 2 3 45 6 7 8 9 10 11 12 13 14 15
oj1 0 01001101 0 1 1 1 1 1
1{0 110 0011 10 1 0 1 1 1 1
20 1 1.0 110 001 0 1 1 1 1 1
3412 0 172110 0101 0 1 1 1 1 1
410 011100111 1 1 0 1 0 1
576 0 1.1 0 1.1 0 1.1 1 1 1 0 1 O
6{1 100 011011 1 1 o0 1 0 1
71100 1001 1 1 1 1 1 0 1 0
810101111110 0 1 0 0 1 1
911 0 1 011 1 101 1 0 0 0 1 1
0/0 1.0 1111101 1 0 1 1 0 0
1171 06 1 0 1 1.1 1.1 0 0 1 1 1 0O O
12{1 11101 01O0O0OT1 1 1 0 0 1
i3(1 111101000 1T 1 0 1 1 0
4f1 1 110101 1 1 0 0 0 1 1 O
{1 1111 01011 0 o0 1 0 0 1

Table 1

Theorem 2.2. There is no function F : P?(2) — P(2) whose equivalence ~p
has four classes.

Proof. Let us suppose that there exists a function F : P(2) x P(2) — P(2) that
generates the equivalence ~p on P(2) x P(2) with four classes, K1, K3, K3 and
K. Then to all elements (X1, X3) € P({0,1}) x P({0,1}) from the same class
K; corresponds the same collection Q% (X1, X»), i = 1..4. Let us represent this
situation by a table similar to Table 1, where 1 in the row 7 and the column j
denotes that the element j belongs to the collection of element ¢ and vice versa.
Obviously, this new table must have 1 in all the places where there is 1 in Table
1, and some of the 0’s are replaced by 1 so that the table remains symmetric
with respect to the diagonal, and there are four different rows, each of them
representing a collection of the element j.

We show first that there are different integers ¢, j and & between 0 and 15
such that in this table there are 0’s in the places (¢, j), (i, %) and (j, k). Since
the collections Q% are different, at most one of them can have 1 in each place,
so at least three of them have at least one 0. Let there be 0 in the row ¢ and
the column j, and let @} denote the collection of the element i. Then, because
of symmetry, there is 0 in the row j and the column i, and the rows 7 and j
are not equal because the row j has 0 and row 7 has 1 in the column i (every
element belongs to the collection attached to it). Denote the row j by @%. Let
Q3% denote the row k, different from the rows i and j, that has at least one 0.
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case 1 The row k has 1 in the columns ¢ and j. Since it has at least one 0,
let it be in the column [. Then there is also 0 in the row [, column k. The row
l is different from the row k, by the same argument as for the rows ¢ and j. It
also differs from the rows ¢ and j in the column k, and let denote the row ! by

Q-

1 i 1 k
1
H 1 0 1
1
] 0 1 1
l 1 0
1
1
k 1 1 0 1

Let m be an integer between 0 and 15, not equal to 7, j, £ or l. The row m
must be equal to one of the rows i, j, k or I, say to the row ¢. Then, there is 0
in the place (m, j) and, by symmetry, in the place (j,m), so the row j has at
least two 0’s, in the columns ¢ and m.

From Table 1 we get that for any two fixed columns exactly two rows have
0 in those columns, so collection @% can correspond to at most two elements
from P(2) x P(2). If there is another row, apart from the row m, equal to the
row ¢, then row j has at least three 0’s, and from Table 1 we get that then no
row can be equal to the row j. Also, since there are six 0’s in each column of
Table 1, at most six elements from P(2) x P(2) may correspond to the collection
QL. In any case, there remain at least nine rows different from Q}% and Q%,
so they must be equal to either @% or Q%. By a similar argument we get a
contradiction.

case 2 The row k has 1 in the column ¢ and 0 in the column j. Then, there
is 0 in the row j column k, so Q% has at least two 0’s. Further, since the rows
i and k are not equal, there must be a column ! # j in which they differ.

a. If there is 0 in the row ¢ and 1 in the row k, then there is 0 in the place
(I,%) and 1 in the place (I, k).

i j T k
1
i 1 0 0 1
1
] 0 1 0
1
1
l 0 1 1
1
k 1 0 1 1

The row [ differs from the rows ¢, j and k in the columns ¢, k¥ and ¢ respec-
tively, and we denote the row ! by Q%. Then, there are at least two rows, QL
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and Q% with at least two 0’s and this is impossible by the argument analogous
to case 1.

b. If there is 0 in the row & and 1 in the row i, then there is 0 in the place
({, k) and 1 in the place (I, 7).

1 7 l k
1
t 1 0 1 1
1
7 (] 1 a
1
1
l 1 1 0
1
k 1 0 0 1

The row [ differs from the rows %, j and k in the columns k, ¢ and k respec-
tively, and we denote the row [ by Q%. Then, there are at least two rows, Q}
and Q% with at least two 0’s and this is impossible by the argument analogous
to case 1.

case 3 The row k has 1 in the column ;7 and 0 in the column ¢. This case is
analogous to case 2, and is also impossible.

case 4 The row k has 0 in both columns 7 and j.

i 7 k
1
) 1 0 0
1
7 0 1 0
1
1
1
k 0 0 1

Then 7, j and k are integers between 0 and 15 such that there are 0’s in the
places (i, j), (¢, k) and (4, k).

Let the integers i, j and % correspond to the elements (X1, X2), (¥1,Y2)
and (21, Z) from P(2) x P(2) respectively. Then (X; & Y1) U (X, & Y3) is not
{0,1} = 3 (because it would then contain F(X1, X2) & F(Y1,Y3) regardless of
the values of the function F), or §# = 0 (the elements (X1, X3) and (Y1, Y2) are
different since ¢ and j are different). So (X7 & Y1) U (X2 & Y2) can be either
{0} = 1 or {1} = 2, and F(X;,X2) ® F(Y1,Y2) = A® B can be {1} = 2
or {0,1} = 3, or {0} = 1 or {0,1} = 3 respectively. The same holds for
F(Xl, Xz) D F(Z1,Z2) =A®C and F(Yl,Yz) @F(Zl,Zz) =B&C.
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f(XioN)U(X:8Y:) = (X102)U(X292;) = (M@ Z)U (Y20 2Z;) = a,
a =1 or a = 2, then it is easy to see that the corresponding system of equations

A® B = [,
A®C:ﬂ2a
B®C=ﬂ3:

Bi=aor B; =3,i=1,2,3, has no solution.

If (X10Y1)U(X2@Y2) = (Xi®Z1)U(X282Z2) = a, (Y18 Z1)U(Y28 2Z,) = 5,
B =@, then Y1 ® Z;, or Y5 @ Z,, say Y7 & Z,, is equal to 3, and we have two
cases:
case 1 Y7 = 0, él =0 Then X161 =0(=2X1=0=X1%2, =
080 =0=(X1921)U(X:® Z;) # «, a contradiction), or X; ¢ Y| = «
(=> Xizma= X192 =adf =3 > (Xl@Zl)U(XzﬂBZz) ;é a, a
contradiction).

case 2 Yy = a, Z; = 3. This case can be treated in the same way.

So, no function F : P(2) x P(2) — P(2) generates an equvalence on P(2) x
P(2) with four equivalence classes. a

It is easy to see that if F : P(2) x P(2) — P(2) and the relation ~p has
three equivalence classes, then there exists a partition of P(2) x P(2) in two
classes such that on these classes exists a Boolean function f equal to F.

casen> 2, r>2

Theorem 2.3. There is no function F : P*(r) = P(r), n > 2 whose equiva-
lence has two classes.

Proof. Suppose, on the contrary, that there is a function F whose equivalence
has two classes K; and K. First we show that the collection Q}. of the element
X € K; isequal to K;,i=1,2.

Y € Qr(X) then X € Qr(Y). The collection Q% contains every element
Y from Kj;, because if X ~p Y then Y € Qp(X). (The converse is not true.
The collection @ (X) may contain elements that are not in (X]p.) If Y € K,
then Y does not belong to @%. Indeed, if we suppose thet Y € Q}, than every
X from K, (since it belongs to Q}) must belong to the collection Q% that
corresponds to Y. Then the collection Q% contains all the elements X from
P(2) x P(2). Further, by a similar argument, we get that Q} also contains
every X from P(2) x P(2). (Since every X from K; belongs to Q%, then also
every Y from K belongs to Q}) But then Q} and Q% are equal, and so are
K, and K, and there is only one class in the equivalence generated by F, a
contradiction. So QL is equal to K1, and Q% to K.

Let K, denote the equivalence class [(@, ,...,0)]. Then every element of the
form (X3, X1, ..., X») belongs to Ky, (since (X, ®0)U(X108)U...u(X,®0) = 1),
and (X1, Xa, ., Xn) ~p (X1, X5, ..., X1,), (since (X; & X1) U (X2 ® X})U...U
(Xn @ X|,) = r), regardless of the values of the function F.
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Let (X1, X2,..., Xn) € P"(x).

a)_EXlﬂXz = { then, because of X;UXz =r, (0,0, ..., 8) ~r (X1, X2, - X:)
~F (Xl,Xg,...,Xn) ~p (Xl,Xg,...,_/_Yn), and (Xl,Xg,...,Xn) Gﬁ' :

b) If X; C X, then, because of X;UX; =1, (8,0, ....,0) ~p (X1, X2, ..., Xn)
~F (Xl,Xz,...,Xﬂ), and (Xl,Xz, ...,Xn) € Kl.

c) If X;NX,; # 0 and neither X; C X2 nor X2 C X; then, because of
X1 N X, g Xla (mvﬂaaﬂ) ~F (XlaXI nX2a“'1Xn) ~F (Kax%-"rxn) ~F
(X1, X2, ..., X3), and (X1, X2, ..., Xp) € K. '

This implies that K; = P"(r), so there is no function F : P"*(r) — P(r), n
2 whose equivalence has two classes.

DIv
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3 Appendix

program nir3;
type skup = set of 0..7;
var n,brej,i,j, it, i2, i3, i4, i6, i€, i7, i8 : integer;
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x, £ : array [0..7] of 0..7;
g : array [0..7] of skup;
novaklasa : boolean;
brklasa : array [1..8] of real;
iz : text;
begin
n:=8;
assign(iz,’iznir3.txt’)};
rewrite(iz);
for i:=1 to n do begin
brklasal[i]:=0;
x[i-1]:=i-1;
end;
for i1:=0 to n~1 do begin f[0]:=i1;
for i2:=0 to n-1 do begin f[1]:=12;
for i3:=0 to n-1 do begin f[2]:=i3;
for i4:=0 to n-1 do begin f[3]:=i4;
for i5:=0 to n-1 do begin f[4]:=i5;
for i6:=0 to n-1 do begin f[5]:=i6;
for i7:=0 to n-1 do begin f[6]:=1i7;
for i8:=0 to n-1 do begin f£[7]:=i8;
for i:=0 to n-1 do begin
glil:=[1;
for j:=0 to n-1 do begin
if (((£[i] xor £[j]1) and (x[i] xor x[j1)) = (£[i] xor £[j1))
then gl[i] :=gli] + [x[j1]1;

end;
end ;
broj := 1;
for i:=1 to n-1 do begin
novaklasa := true;
for j:=0 to i-1 do begin
if g[jl = gli] then novaklasa := false;
end;
if novaklasa then broj := broj + 1;
end;

brklasa[broj] :=brklasalbrojl+1;

end; end; end; end; end; end; end; end;
for 1i:= 1 to n do

writeln (iz,’ ’,i,’ ’,brkilasalil);
close(iz);

end.
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