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Dragoslav Herceg!, Helena Malicié¢!, Ivana Likié!

Abstract. We consider a modification of a well-known finite difference
analogue for boundary value problem obtained by a five-point difference
scheme on a uniform mesh. For the matrix arising from this analogue
some of its properties are derived.
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1. Introduction

In this paper we shall concern ourselves with the boundary value problem

-u" +q(z)u(z) = f(z), z€0,1],

1)
u(0) = a, u(l)=p

where g(z) > 0 and both f(z) and g¢(x) posses four derivatives. Under these
conditions it follows that the unique solution u(z) of (1) is of class C® [0,1].

The numerical solution of two-point boundary value problem (1) is most
commonly obtained by finite difference methods. We place a uniform mesh of
size h = 1/ (n + 1) on [0, 1], and denote the mesh points of the discrete problem
by z; =dh, i=0,1,...,n+ 1.

Denoting u(z;) by u; and v" (z;) by u we havefori = 2,3,...,n — 1, see
(1,
h—2
2) —u;’ = T (-2 — 16ui_1 + 30u; — L6uiq +uspa) + 15, |ril < Mht.

Here and throughout the paper M denotes any positive constant independent
of n. In order to form a discrete analogue for (1) we use (2) at the points
T;,1=2,3,...,n—1,

h —2 II

3) —u'l' = ( 14ug + 29u; — 16us + u3) + ﬁ + 7y, |7‘1| < Mhz,
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at the point z;, and analogously at z,

h~2 u'!
(4)  —ult=—— (un—2—16up_1+29up—14u, 1 )+ 4r, frn| < MA2

12

12

Using (1), (2), (3), (4), and up = a, u,,.1 = 8, we obtain n equations for n
unknowns. In matrix notation, we can write this in the form

Bup =d+,

where B is an n X n matrix, and u,d and r are column vectors, given by

29+12h%¢;  —16 1 7
—16 30+12h%*g2 16 1
1 —16  30+12h%gz  —16 1
h-—2
B— ’
12 -
1 ~16 30+12h%g, -2 —-16 1
1 -16 30+12h%q,—1  —16
L 1 -16 20-+12h% g,
(5)
[uy ] [ i+ L2 - fot+ % 1 [ ]
Uz fa— ﬁf T2
Uz f3 T3
up = ) d=| : , r=
Up-2 fn-—2 Tn—2
Un—1 f'n—l = 1232 Tn—1
L Un d Lfn+q—"f.21__fn+1+li§]%_ L ™ J

Let us define the solution vector z of
Bz=d

as our discrete approximation of the solution u(x) for problem (1). In [3] it is
proved
llun = 2lleo < Mh*

in both cases g(z) =0, x € [0,1] and Iél[%ai] lg (z)| h? < 8.
T 1

Let By be the matrix B in the case g(z) = 0,z € [0,1]. In 3], the inverse of
the matrix By is given explicitly by By = [bi;] , where

32 j(n+1‘i)_5j—15n—i) >
bu—h( i o) i>J
5, — Sinb(G + V)
' sinh(d)

)

bij = bji,

@ = arccosh(7).
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2. Some properties of the matrix B

We begin with some properties of the matrix By. To explain and describe
these properties we shall use the n x n matrix

[ 2 -1 i

(6) A=

-1 2 -1
-1 2 |

The following results concerning the matrix A are well known, see [4].

Definition 1. A matriz A is called inverse monotone if A has an inverse A~' >
0, see [1].

Theorem 1. Let the n X n matriz A be given by (6). Then

(1) A7 =[ai;] exists and

ai; = aji, a;; = , 1<i<j<n

(31) A has the eigenvalues
A =2-2cos(kmh), k=1,2,...,n,
and the corresponding eigenvectors

(N vy = [sin(kwh), sin(2k7h),...,sin(nkmh)]", k=1,2,...,n.

(its) For allh >0 ;
A7, = f|n* a7, < 3

(iv) A matriz A+oF is inverse monotone for all real 0 > 0,where E is identity
matriz.

Using results of Theorem 1 it is easy to show the following

Theorem 2. Let By be the matriz B given by (5) with ¢; = 0,71 =1,2,...,n.
Then

(i) The matriz By is an inverse monotone matriz.

(i1) Bo has eigenvalues

1

= o ((8 — 2cos (Ic7rh))2 _ 36) >0, k=12,...,n,

1223
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and the corresponding eigenvectors are given by (7).
(i4i) Forall h>0

_ 1
851, = 857 < 1
(iv) Letw > 0. Then it holds
1 3h?

” (Bo + wE)_llL T w+m  3wh?+ (7 cos(mh)) (1 - cos (rh))

Proof. 1t is easy to see that

B2
B, = 2412
0 = 12 (A% +124).
So, we have

B! =12h%(A + 12E) 1AL,

Since A and A + 12F are inverse monotone matrices, it follows that By is an
inverse monotone matrix too.

From - p-
_ 2 2 _
By = = (4 +124) = — ((A +6E) 36E)
we obtain that the eigenvalues pjy of the matrix By are for k =1,2,...,n,

i = 12h2 ((/\k+6) —36) 12h2 ((8 2 cos (kwh))? -36)

where A\ are the eigenvalues of the matrix A.
From the inequalities, see [6],

1 ’ 1
(A +12E)7 M = lI(A+12E) o < 13, IR A~ = IR A7 o < 5.
we have (iii).
The eigenvalues of the matrix By + wF are w + px and all a.rg positive. So,
this matrix is regular and the spectral radius of ((Bo + wE)_l) is (w lm)
Now by the definition of the norm || - ||2 the statement follows directly. a

Theorem 3. Mairiz B is inverse monotone tf
(8) 0<¢<3h2% i=12...,n
Proof. In this case we have

B:B0+Q7 Q:diag(ql"‘ha"‘aq‘n)-

It is convenient to make the following transformations of the matrices By and
B:
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1
By = 1535 ((A+6E)(A+6E) - 36E),
B = B0+Q:—1—((A+6E)(A+6E)+12h2Q—36E).

1242
If we denote by

K = (36E — 12h%’Q)(A + 6E) ' (A + 6E) ",

we have
1

and
B~ =12n*(A+6E) ' (A+6E) ' (E-K)™".

Since (A + 6E)~! > 0, Theorem 1, to prove that the matrix B is inverse
monotone it is enough to show inverse monotonicity of the matrix E — K.
Let
C =36(A+6E)'(A+6E)™1.
Eigenvalues of the matrix A + 6E are 8 — 2cos(kxh),k = 1,2,...,n, and it
follows that eigenvalues of the matrix C are

: 6
T = 3 7, k=12,...,n.
(8 — 2 cos (kmh))

For the spectral radius of the matrix C we obtain

36

PO = B 2cosmm) <

From (8) it follows
0 < 36E — 12h%Q < 36E,

and we have
0<K<C.

Now from well-known theorems, see [4], we conclude
p(K) < p(C) <1

and (E— K)~! exists and is nonnegative. So, the matrix B is inverse monotone,
as a multiplication of three inverse monotone matrices. 0

Corollary 1. IfQ = wE withw € [0,3h~%], then the matriz By +Q is inverse
monotone.
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Theorem 4. If @ = wFE and w < 0, the matriz Bo+ Q is not inverse monotone
for all h > 0.

Proof. Let
z = [sin(wh),sin(27h), . ..,sin(n7wh)]T.

Obviously, 2 > 0. The vector z is eigenvector of the matrix By and corresponding
eigenvalue is

1
T 12h2

So, the matrix By + @ has the eigenvalue u; + w and the corresponding eigen-
vector is z :

1 ((8 — 2cos (rh))* — 36) = % (7 —cos(mh)) (1 — cos (wh)).

(Bo+Q)z= (1 +w)=z.

If we suppose the matrix By + ¢} is inverse monotone, then (Bp + Q)‘l >0 and
from
2= (m+w) (Bo+ Q)

follows that u; + w must be positive. But, ’llin}) 1 = 0 and for a sufficiently
_.*

small h we obtain
p1+w <0.

This means that By + () is not an inverse monotone matrix. O
We considered the boundary value problem (1) with the assumption ¢ (x) >
0. Tt is known, see [4], that (1) has unique solution if

9) a(z) 2n>-7° z€[0,1].

Now we shall prove that the matrix B is regular for a sufficiently small A if (9)
is satisfied.

Theorem 5. The matriz B is regular for sufficiently small h if
- <n<qg, i=12...,n

Proof. The matrices B and @ are both Hermitian. Let 8; and 1 be
eigenvalues of the matrix B and () respectively and

Br <P <--- < By nmin<--< T
Since B = By + (@ we have, see [2],
LE + 71 SBkS”k+tna k=12,...,n,

where u; are the eigenvalues of the matrix By. Since

' 1
Ty = 1Ignii£nq" >q > -, Br 2 I =535 (7 — cos (wh)) (1 — cos (mh)),
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and

lim 1 = 7T2
h—+Ol‘ ’

it follows for sufficiently small A
O<pm+n<B, k=12,...,n.
So, all eigenvalues of the matrix B are positive and B is a regular matrix. 0O
Corollary 2. The matriz B is regular for all h if 0 < ¢q;, ©1=1,2,...,n.
Theorem 6. The matriz B is regular for n > 3 if
—98<n<qg, 1=12,...,n,
and it holds that

1 3h®
w+1n  3nh%+ (7 —cos (7h)) (1 — cos (wh))

1B, <

Proof. For n > 3 we have h < 0.25. The matrix B is Hermitian and for the
smallest eigenvalue §; of the matrix B it holds

0<u —98 < +9< b,

since y; is monotone decreasing as function of h and g, (0.25) > 9.83. So,

1 1
Bl =— .
" ”2 o < w+n
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