Novi SAD J. MATH.
VoL. 30, No. 2, 2000, 1-10

Proceedings of the TARA 2000 Conference
Novi Sad, Yugoslavia, September 6-7, 2000

AJA - ADAPTABLE JAVA AGENTS

Mihal Badjonski', Mirjana Ivanovié!

Abstract. Software agents usually operate in dynamic, unpredictable
environments with many unforeseen features that change over time. In
order to be effective an agent has to adapt itself to the changes in its
environment. In this paper we present AJA, an agent development tool
that can be used for the development of adaptable agents implemented
in Java. In addition to adaptability, AJA agents possess other attractive
features as well, such as negotiation capability realized using conversation
scenarios, reactivity to events in the agent environment, meta-capability,
accessibility via World Wide Web (WWW), etc.

AMS Mathematics Subject Classification (1991): 68N20

Key words and phrases: software agents, machine learning, artificial in-
telligence, Java.

1. Introduction

Currently, agents are the focus of intense interest on the part of many sub-
fields of computer science [8]. Agent applications herald a fundamentally new
paradigm for developing and implementing complex systems. The agent based
system development paradigm involves building sophisticated, self-contained
components, which can interact flexibly with a number of independently de-
veloped similar components [7].

In most cases, an agent is embedded in an unpredictable and dynamic en-
vironment. Therefore, agent needs a capability to adapt itself to new circum-
stances that emerge during its life. One way of achieving this adaptation is to
use machine learning.

In this paper, a language-based agent development tool AJA is presented.
AJA is aimed for the development of adaptable software agents in Java.

The remainder of this paper is structured as follows. A detailed description
of AJA is given in the next section, which is also the most significant part of the
paper. The third section is concerned with contributions related to our work
and some conclusions. '

lInstitute of Mathematics, Faculty of Science, Trg Dositeja Obradoviéa 4, 21000, Novi Sad,
Yugoslavia, e-mail: michal@eunet.yu, mira@Qunsim.ns.ac.yu

2 M. Badjonski, M. Ivanovié

2. AJA - Adaptable Java Agent

AJA is a language-based development tool for adaptable software agents.
The attribute language-based is used in the previous sentence, because the main
parts of AJA are two programming languages:

s the programming language HADL (Higher Agent Definition Language),
which is used for the definition of higher-level agent features, and

s the programming language Java+, which is used for the definition of lower-
level agent parts.

Java+ is the standard Suns Java programming language extended with new,
agent-specific statements and constants. Both HADL source code and Java+
source code are translated into Java.

In addition to HADL and Java+ translators to Java, AJA also contains Java
classes that are used at run-time for agent execution. These classes implement
the generic architecture of AJA agent.

2.1. The Generic Architecture of AJA agent

In this subsection we describe the generic architecture of AJA agents. These
components are depicted in Figure 1.

]meta:capabilities J

timeawareness J

WW Wscenario

scenarios

conversation reflexes ‘

‘ actions

dependantvalues

adaptableparatneters

beliefs

Figure 1: Components of AJA agents.

o beliefs - Beliefs are internal data structures in which agent stores the facts
it believes that are true. These facts represent all what agent kuows about.
itself, about other agents in the system, about its environment, and about
the world. In AJA, a belief can be any cloneable and serializable Java
object or Java primitive value, as well as a special value determined by
one of the two available machine-learning components.

AJA - A language-based tool for the development . .. 3

e machine-learning components - There are two machine learning compo-
nents embedded into AJA agents. They enable the use of the following
constructs:

— dependant values - A dependant value depends on some other val-
ues. A dependant value can be used when the dependency cannot be
analytically obtained. A dependant value is calculated using a neu-
ral net. For each dependant value inside an agent there exists one
feed-forward back-propagation neural net. The agent programmer
can specify parameters for each neural net, such as number of nodes
and number of hidden layers. Otherwise, default values are used. A
neural net can be trained at the beginning of the agent life if a file
with training examples is provided. This learning is off-line super-
vised learning. During its life agent receives feedback for its actions.
This feedback is then used for on-line reinforcement learning of the
neural net used.

- adaptaeble parameters - The second machine learning component con-
trols adaptable parameters. An adaptable parameter is a more or less
constant value, determined experimentally. The agent programmer
defines the initial value of an adaptable parameter. During agents
life, it receives feedback regarding the value of the adaptable param-
eter. Using this feedback, the machine-learning component slightly
adjusts the value of the adaptable parameter.

e actions - Agent performs some actions. The body of an action in AJA
consist of Java+ statements, i.e. standard Java statements, statements
that access and modify agent beliefs, statements that invoke other actions
execution, and statements that initiate conversation processes with other
agents. Several actions can be executed simultaneously in separate Java
threads. As there can be actions that cannot be executed simultaneously
care is taken to synchronize their execution.

e conversations - Whenever two AJA agents communicate, they are involved
in a conversation process. Every AJA agent has a predefined set of con-
versation scenarios. A conversation scenario can be seen as an automaton.
When conversation starts, the automaton is in its starting state. Depend-
ing on the state of the automaton, agent executes appropriate Java+ code
and changes the state of the automaton. Conversation process ends when
a final state of the automaton is reached.

e reflezes - Reflexes are reactive components of AJA agent architecture. A
reflex is a condition-actions pair. Every reflex has its priority. Condition
parts of agent reflexes are evaluated periodically. Reflexes with highest
priority from those whose conditions are satisfied are then selected for
execution.

4 ‘M. Badjonski, M. Ivanovié¢

e meta-capabilities - At any time point an agent can find out the names of
the actions that are being executed as well as the names of the actions
that are waiting to be executed. An action execution can be postponed
due to incompatibility with currently executing actions (synchronization).

o web accessibility - An agent has its HTTP address and it is accessible
through the WWW. When one accesses the agent using an Interuet browser,
an instance of a special conversation scenario of the agent starts to execute.

e awareness of time - An agent is aware of time. It can delay an action
execution until any specified time point in the future. It can also pause
the execution of the current action for a given time period.

An AJA agent does not have to use all of the components provided by the
generic AJA agent architecture.

2.2. HADL - Higher Agent Definition Language

Higher-level parts of an AJA agent are specified using HADL language. Ter-
minal symbols, of the grammar are written using capital letters, while non-
terminal symbols are written using lowercase letters.

HADL specification is structured as follows:

specification =
AGENT agentname
LOCATED ON hostname [RMI portnumber] [HTTP portnumber]
[PICTURE filename]
[javaimport]
[beliefsDeclaration]
[actionsDeclaration]
[conversationScenariosDeclaration]
[webConversationScenarioDeclaration]
[reflexesDeclaration]
[initialization]
END agentname ’.°’

Every AJA agent has its name and it is located on a computer. The name
of the computer where the agent is located is the Internet name of that com-
puter (e.g. bambi.im.ns.ac.yu). Agent-to-agent communication in AJA is imple-
mented using Java Remote Method Invocation (RMI). Agent specification can
therefore contain the port number of the rmiregistry. Similarly, the HTTP
port number can also be specified. Using this port the agent is accessible via
WWW,

An AJA agent is a Java program that has its window. One element of this
window is a picture of the agent.

The next part of HADL program, also optional one, is the Java import
declaration. Here, the agent programmer declares Java packages, classes, and/or
interfaces from various packages that are used in the agent implementation.

AJA - A language-based tool for the development . . . 3

2.2.1 Agent Beliefs

Declaration of agent beliefs has the following syntax rule:

beliefsDeclaration = BELIEFS belDecl ; { belDecl ;}

belDecl =
belName : javaType [= initValue] |
belName : ADAPTABLE = initValue [LBOUND value] [UBQUND value] |
belName : DEPENDS ON list [EXAMPLESFILE fileName] [netConf]

list = belNameOrdoubleExpression {, belNameOrdoubleExpression}

belNameOrdoubleExpression = belName | doubleExpression

Every belief has its name. Type of a belief can be any cloneable and serializ-
able Java type, or the belief can be an adaptable parameter, or it is a dependant
value that is calculated using a neural net. Lower and/or upper bounds for the
value of this belief can be specified.

The declaration of a belief that is a dependant value contains the keywords
DEPENDS ON followed by the names of beliefs and/or Java+ double ex-
pressions it depends on. The value of the dependant belief is calculated using
a neural net. The file containing training examples for the neural net can be
specified as well as the neural net configuration (number of hidden layers and
number of nodes in each layer). A default neural net configuration is used
when a user-specified neural net configuration is omitted. During agent life, the
reinforcement received will be used for further training of the neural net.

2.2.2 Agent Actions

Agent actions are declared using the following rules.

actionsDeclaration = actionDecl { actionDecl }

actionDecl =
ACTION (returnType | void) actionName ([parameters])
[INCOMPATIBLE actionName {, actionName }]
body

body = { java+ }

The main part of an action declaration is the segment of Java+ code whose
execution corresponds to the action execution. An action can have parameters
and it can return a value, what makes actions similar to Java methods. However,
the body of an AJA action is a Java+ code, i.e. agent-oriented constructs defined
in AJA can be used in addition to standard Java statements.

Since AJA agent can have several actions executed at the same time there
is a need for actions synchronization. Therefore, a declaration of each action
contains part where the names of incompatible actions are listed.

6 M. Badjonski, M. Ivanovié

2.2.3 Conversation Scenarios

Agents in AJA multi-agent system communicate by exchanging messages.
A message contains an array of Java objects. The first element of this array
has to be a String object. There are no‘restrictions on types and number
of other objects in the array. The String object should be used as a speech-
act performative (e.g. request, ask, cancel, deny, confirm) in the chosen agent
communication language (ACL). The agent developer chooses the ACL it finds
the most suitable for its systern.

To jointly solve their problems, agents usually need to exchange several mes-
sages, i.e. they are involved in conversations. Therefore, instead of handling
each received or sent message independently, AJA agent possesses conversa-
tion scenarios that group several logically related message sending and message
receiving into appropriate structures.

Simultaneously, agent can be involved in several conversations.

The syntax rules for conversation scenarios are as follows.

conversationScenariosDeclaration = convSceDecl {convSceDecl}

convSceDecl = CONVERSATION SCENARID (returnType | void)
scenarioName ([parameters])
[activCondition] convBody

activCondition = CONDITION { java+ }
convBody = { java+ } startState {state}
startState = START { java+ }

state = [FINAL] stateName { java+ }

A conversation scenario can be seen as an automaton. It countains a finite
number of states. Exactly one state of the automaton is the starting state. In
each state of the automaton agent executes a block of Java+ code and changes
the state of the automaton. There can be zero, one or more final states of the
automaton. When a final state of the automaton is reached and its code is
executed, the conversation ends.

Each conversation scenario has its name, it can return a value and it can
have parameters. At the beginning of the conversation scenario body a Java+
code can be used to declare local variables visible in all states of the automaton.

2.2.4 WWW Conversation Scenario

WWW conversation scenario is similar to the conversation scenarios de-
scribed above. The only difference is in the type of conversation participants.
In WWW conversation the agent communicates with a person through his/her
web browser. In WWW conversation scenario special input-output Java+ state-
ments have to be used. Moreover, due to client-server nature of HTTP protocol,
there are some restrictions on usage of these special input-output statements.

AJA - A language-based tool for the development . .. 7

The syntax rule for WWW conversation scenario declaration is:

webConversa‘cionScenariéDeclaration =
WWW CONVERSATION SCENARIO convBody

Since there is at most one WWW conversation scenario in the agent program,
it has no name. It does not possesseither return value or parameters. WWW
conversation scenario activates whenever a new HTTP request is received.

2.2.5 Reflexes

A reflex consists of a condition that has to be satisfied in order to activate
the reflex and actions that sequentially execute when the reflex is activated and
there are no other activated reflexes with higher priority. The syntax rule for
reflexes is:

reflexesDeclaration =
[REFLEX CHECKING PERIOD numOfms] reflDec { reflDec }

reflDec = REFLEX reflexName [PRIORITY number]
CONDITION { java+ }
EXEC actionName (realParameters)
{ ; actionName (realParameters) } [;]

Conditions of reflexes are checked periodically. The period for reflex condi-
tion checking can be specified (in milliseconds). Besides periodical reflex check-
ing, a Java+ statement $CHECK_REFLEXES can be used in any agent part to force
immediate reflex checking.

2.2.6 Agent Initialization

At the beginning of the agent life its beliefs can be initialized and initial
actions can be executed.

initialization = INITIALIZATION { java+ }

2.3 Java+

Java+ is Java language extended with necessary constructs that are needed
to access and control higher-level components of AJA agent.

e Statements that access agent beliefs: $GET BEL(belName), $GET_BEL_COPY-
(belName), and $SET BEL(belName, newValue).

o Statements that give reinforcements to adaptable parameters and depen-
dant values: $AP_BAD(belName), belName, $AP HIGHER(belName),
$AP_LOWER(belName), DV_BAD(belName), DV_SHOULD BE(belName, value).

o Constants such as $AGENT_NAME, $AGENT_HOST, $AGENT_RMI_PORT, $AGENT-
HTTP_PORT, and $AGENT_URL whose values describe various agent proper-
ties.

8 ' M. Badjonski, M. Ivanovi¢

e Statements that are used for the communication with other agents: $SEND-
(agentURL, message, obj, obj,...), $REPLY(agentURL, messagelD
message, obj, obj,...), $ANSW_.TO_MESSAGE (messagelId), and $ANSW-
_-TO_MESSAGE_WAIT (messageld).

e Statements that invoke action executions: $INVOKE(actionName(par,
pary, ..., pary)), $INVOKE WAIT(actionName(pur;, pary, ...,
pary)), and $INVOKE_AT(time, actionName(pary, para, ..., par,)).

o Constructs related to conversation scenarios are: $START_CONVERSATION-
(conuName (par;, purs, ..., pary)), $START _CONVERSATION WAIT
(convName(par,, pary, ..., par,)), $START_CONVERSATION_AT(time,
convName(par,, pary, ..., parp)).

o Statements related to time: $NOW, $WAIT(k, m, s, ms), and $WAIT-
_UNTIL(dateTime).

e Meta-constructs: used for querying which actions are currently executed,
which actions are waiting to be executed, which conversation scenarios
are active, and meta-constructs for canceling the executing and waiting
actions and active conversations:

e Other statements: $CHECK_REFLEXES for immediate reflex checking and
triggering and various input-output stateinents that enables user-friendly
agent-user and agent-web user communication.

Some of the above mentioned elements cannot be used in some contexts.
For example, the agent belief modification can occur only as part of the ac-
tion execution or in the initialization part of agent program. For that reason
statements $SET_BEL and $GET_BEL can be used only in this parts of agent pro-
gram. Nevertheless, all beliefs can be read in any part of agent program using
$GET_BEL_COPY statement. This restriction to belief modification is introduced
in order to avoid simultaneous modification of agent beliefs. Actions are allowed
to modify beliefs, because their execution is synchronized.

3. Related work and conclusion

Many of the concepts and ideas used for the creation of AJA are not new.
However, the way these ideas are compounded together and implemented in
AJA is unique. In this section we briefly mention the works that are related to
our undertaking.

A significant influence on our current work has our previous work. AJA
is a direct descendant of the agent-oriented language LASS [2], [3]. To im-
plement LASS in Java, we have implemented a Java package LASSMachine
[1]. Nevertheless, soon we realized that instead of making a new independent
agent-oriented programming language, the better idea is to enhance Java with
suitable agent-oriented constructs. For that reason we have developed AJA as
an enrichment of Java language.

AJA - A language-based tool for the development . .. 9

The idea of enhancing Java by adding agent constructs that we have adopted
for the creation of AJA has also been adopted by researchers in the Australian
company Agent Oriented Software Pty. Ltd. They have developed agent devel-
opment tool Jack [6]. Besides the similarity in the approach, there are no other
similarities between Jack and AJA. i

Conversation scenario in AJA contains automaton that controls the conver-
sation. The idea of using automaton as agent coordination technique is adopted
from the work of Barbuceanu and Fox. In their language COOL [4] they use
automata to program inter-agent coordination.

Reflexes of AJA agents are similar to behaviors in Subsumption Architecture
[5]. Behaviors are mostly used for robot programming, whereas reflexes enable
the software agent to react to the events in its environment.

At last but certainly not least significant, we find the idea of Schoepke ex-
pressed in [9] very inspiring for our work. Here Schoepke suggests that intelli-
gent agents can be a vehicle that introduces other Al-related technologies into
mainstream computer science. Following his suggestion, we have included two
machine-learning components into AJA agent generic architecture. An applica-
tion programmer that uses AJA does not need to know anything about machine
learning. However, using adaptable parameters or dependent values he/she will
actually use machine learning in its product.

There is room for further improvements of AJA in the future work.

Although AJA agent can communicate only with other AJA agents care has
been taken during AJA development to leave an opportunity of making AJA
agents FIPA compliant in the future.

Another way to improve AJA is to make AJA agents more intelligent. Other
Al-related components can be included into generic AJA agent architecture.

References

[1] Badjonski, M., Implementation of Multi-Agent Systems using Java, M.Sc. thesis,
University of Novi Sad, 1998.

[2] Badjonski, M., Ivanovié, M., LASS - A Language for Agent-Oriented Software
Specification. In Proceedings of VIII Conference on Logic and Computer Science
Lira 97. pp. 1-4. Novi Sad, Yugoslavia, 1997.

(3] Badjonski, M., Ivanovié, M., Budimac, Z., Software Specification using LASS.
In: Advances in Computing Science, Lecture Notes in Computer Science, Vol.
1345. (R. K., Shyamasundar, K., Ueda, eds.), pp. 375-376. Springer-Verlag, Berlin
Heidelberg New York, 1997.

{4] Barbuceanu, M., Fox, M., S., The Design of a Coordination Language for
Multi-Agent Systems. In: Intelligent Agents III: Agent Theories, Architec-
tures and Languages, Lecture Notes in Artificial Intelligence 1193. (J.P.Muller,
M.J.Wooldridge, N.R.Jennings, eds.}, pp. 341-357. Springer Verlag, 1997.

Brooks, R. A., Intelligence without Reason. In: Proceedings of the Twelfth In-
ternational Joint Conference on Artificial Intelligence (IJCAI-91). pp. 569-595.
Sydney, Australia, 1991.

[5

—

10

[6}

[7)
[8)

[10]

[11)

[12]

M. Badjonski, M. Ivanovié¢

Busetta, P., Rénnquist, R., Hodgson, A., Lucas, A., JACK Intelligent Agents -
Components for Intelligent Agents in Java. In: AgentLink News 2. (P. Davidsson,
ed.) pp. 2-5. ISSN 1465-3842, http://www.agentlink.org, 1999.

Jennings, N. R., Agent Software. In: Proceedings of UNICOM Seminar on Agent
Software. pp. 12-27. London, UK, 1995.

Jennings, N. R., Wooldridge, M., Application of Intelligent Agents. In: Agent
Technology: Foundations, Applications, and Markets. (N. R. Jennings, M.
Wooldridge, eds.), pp. 3-28, 1998.

Schoepke, - S. H., Intelligent agents will be a vehicle for other AI-
related technologies. In: Proceedings of International Workshop on
Agent-Oriented Information Systems (AOIS’99). To appear (available as
http://www.aois.org/99/schoepke.html).

Weerasooriga, D., Rao, A., Ramamohanarao, K., Design of a Concurrent Agent-
Oriented Language. In: Intelligent Agents, Lecture Notes in Artificial Intelligence,
Vol. 890. (M. Wooldrigde, N.R. Jennings, eds.), pp. 386-401. Springer-Verlag,
1994.

Wooldridge, M., Jennings, N. R., Agent Theories, Architectures, and Languages:
A Survey. In: Intelligent Agents, Lecture Notes in Artificial Intelligence, Vol. 890.
(M. Wooldrigde, N.R. Jennings, eds.), pp. 1-39. Springer-Verlag, 1994.

http://www.nortelnetworks.com/products/announcements/fipa/info. html.

