Novl SAD J. MATH. 19

VoL. 30, No. 2, 2000, 19-27

Proceedings of the TARA 2000 Conference
Novi Sad, Yugoslavia, September 6-7, 2000

MODULAR LANGUAGE SPECIFICATIONS IN
HASKELL

Mirjana Ivanovié!, Viktor Kunéak '

Abstract. A framework for specification of programming language se-
mantics, abstract and concrete syntax, and lexical structure are proposed.
The framework is based on Modular Monadic Semantics and allows in-
dependent specification of various language features. Features such as
arithmetics, conditionals, exceptions, state and nondeterminism can be
freely combined into working interpreters, facilitating experiments in lan-
guage design. A prototype implementation of this system in Haskell is
described and possibilities for more sophisticated interpreter generator
are outlined.

AMS Mathematics Subject Classification (1991): 68N20

Key words and phrases: interpreter, modularity, Denotational Semantics

1. Introduction

Denotational Semantics is a widely used method for fornal specification of
the programming language semantics. It is a complete semantics, which permits
proving all relevant program properties, and enables automatic generation of
interpreters from the language specifications. One of the problems which hinders
wider use of Denotational Semantics is its lack of modularity.In the last decade,
an approach called Modular Monadic Semantics has been proposed as a means
to structure Denotational Semantics and make it more usable. This approach
has theoretical advantages in systematic treatment of language features ([9]) and
is also of great value for generating more cfficient interpreters fromn specifications
(18], [3D)-

In this paper the benefits of using Modular Monadic Semantics for writing
language specifications in Haskell are explored. Unlike previous works, which
focused on semantics ([8], [3]), or abstract syntax ([2]), special attention is
paid to modularity of the concrete syntax and lexical structure {henceforth
termed lexics). The result is modularity of the interpreter along two dimensions:
interpreter stages and language features.

lInstitute of Mathematics, University of Novi Sad, Trg Dositeja Qbradaoviéa 4, 21000 Novi
Sad, Yugoslavia, {miraQunsim, viktor@uns}.ns.ac.yu

20 M. Ivanovié, V. Kunéak

. . lexics for
lexics for lexics for
. . error
arithmetics state .
handling
syntax for
syntax for svutax for
. . error
arithmetics state .
handling
semantics . semantics
sermantics
for for stat for error
. . or state .
arithmetics handling

Figure 1: Two levels of modularity

The implementation is based on a higher-order, non-strict, purely functional
programming language Haskell. In addition to features present in Haskell98
([6]), multiparameter type classes were used. Overlapping class instances were
also used, most notably in order to introduce the subtyping relation.

The rest of the paper is organized as follows. In Section 2, the treatment
of modularity is clarified. In Section 3 some examples illustrating language
specification in our system are presented. Section 4 explains the present im-
plementation of the system in Hugs Haskell interpreter. Section 5 sumunarizes
the results and Section 6 outlines a future iinplementation based on program
generation.

2. Modularity in language design

Division of interpreters and compilers into stages of lexical analysis, syntax
analysis and semantics analysis is a widely used approach whose benefits are well
known. The focus of this paper is on another level of inodularity: division of an
interpreter with respect to language features. The idea is to build blocks for fea-
tures such as arithmetics, conditionals, loops, control flow, error handling, local
definitions, and nondeterminism. By cownbining appropriate building blocks, an
interpreter for the desired language is obtained.

The intention is to apply a 2-dimensional modularity. Grouping componernts
along one dimension yields the usual stages of interpreter, whereas grouping
them along the other dimension results in specifications of language features.
It seems that this approach leads to a more systematic language design by
providing foundations for the well recognized principle of orthogonality ([7]).

In both dimensions of modularity, using Haskell as implementation language

Modular language specifications in Haskell 21

is advantageous. Lazy intermediate data structures help define a clean iuter-
face between stages of interpretation, and demand-driven evaluation strategy
makes the operational behavior of the program identical to the behavior of a
monolithic interpreter. The advantages are even more striking in the case of
feature-wise modularity. While the advantage of using a purely functional pro-
gramming language for specification of Denotational Semantics is evident, the
use of multiparameter type classes make it possible to express the new dimension
of modularity in the type system, avoiding the program generation.

3. Modular language specification in Haskell

A set of modules in Haskell has been built which enables modular speci-
fication of the programming language and its interpreter. Using higher-order
functions from these libraries, Haskell modules can be written to concisely de-
scribe interpretation the stages for each language feature. Arithmetics features
will be used to illustrate the nature of these specifications.

Lexics of a language feature contains token data type definition (Token) and
a list (1exemes) of lexeme specifications, which are pairs consisting of a regular
expression and a function of the type [Char] -> Token.

data Token = N Int | Plus | Times | Divided | Power
lexemes = [(pInt, makeInt), (xrSym ’+’, _ -> Plus),
(rSym **’, _ -> Times), (rSym ’/’, _ -> Divided),
(rSym >~?, _ -> Power)]
pInt = digit <&> (rMany digit) where digit = rAny0f "0123456789"
makeInt = N . foldl o O where o n d = 10*n+(ord d-ord ’0’)

Token data type defines the interface between lexical and syntax analyste stage
for the particular language feature. Each regular expression defines a sequence of
characters comprising a lexeme of the language. Regular expressions are built
using the operators <&>, <|>, and rMany which correspond to concatenation,
alternative, and iteration, respectively. The function which forms the second
component of the pair in lexeme specification maps the lexeme into its Token
representation, which is used in the syntax analysis stage.

Syntax specification for a language feature contains abstract syntax tree def-
inition and a function (par) mapping a token to operator description.

data Tree x = Const Int | Add x x | Mul x x | Div x x | Pow x x
par (N x) literal (Const x)

par Plus infixOpL 502 Add; par Times = infixOpL 503 Mul
par Divided = infixOpL 503 Div; par Power = infixOpR 504 Pow

nwou

22 M. Ivanovié, V. Kunéak

Declaration of the abstract syntax tree contains a type variable in place of
recursion. Declaring the tree as a constructor rather than a type is essential
for modularity of abstract syntax, as we shall see in 4.2. Specification of the
operator corresponding to a token is achieved using predefined higher-order
functions literal, infixOp, infixOpL, infix0pR, prefix0p and others. For
instance, infix0OpL function defines a left-associative infix binary operator with
the given priority and syntax tree constructor. infix0OpR can be used to specify
right-associative operators, prefix0Op and prefixBinOp for prefix operators,
and ternary for ternary prefix operator. The library can easily be extended
with new operator specifications.

Semantics specification for a language feature is based on Modular Monadic
Semantics. In Haskell it is expressed in the form of Alg instance declaration.

instance (Subtype Int v,ErrMonad String m)=>Alg Tree (m v) where
phi e = case e of

(Const x) -> returnInj x
(Add xm ym) -> lift2sub plus xm ym
(Mul xm ym) -> lift2sub tims xm ym
(Div xm ym) -> do x <- mprj xm; y <- mprj ym

if y==0 then eThrow "Div by zero"

else returnInj (divi x y)

(Pow xm ym) -> lift2sub pow xm ym

The type constructor Tree can be treated as a signature of an algebra. This
instance declaration defines a particular algebra of the signature Tree by inter-
preting operations represented as nodes of the abstract syntax tree ([2]). This
interpretation corresponds to the semautics definitions in Denotational Seman-
tics ([11]), but adopts the use of Modular Monadic Semantics to achieve a higher
level of abstraction and modularity.

Modular Monadic Semantics is based on the notion of monad ([9], [12]). As
far as programming in Haskell is concerned, a monad is a higher-order abstract
data type, given by a class declaration

class Monad m where
return :: a -> m a
(>>=) ::ma->@G@->mb) >mb

and satisfying the following 3 laws:

m >>= return = m (return x) >>=f = f x
m>= (\a->(f a>=g)) = (mn>>=1) >>=pg

Monads generalize function application, a fact formalized by the following in-
stance declaration.

Modular language specifications in Haskell 23

newtype Id x = Id { unld :: x }
instance Monad Id where
return = Id; (Id x) >»>=f = f x

The programs expressed via monad composition become easier to maintain, as
the meaning of the program can be tuned by changing the underlying monad.
To make the use of monads more convenient, Haskell provides syntactic sugar
in the form of do-notation, whose essence is given by the equation

do {x <-m; e} =m >>= (\x > e)

In Modular Monadic Semantics the domain of interpretation is decomposed
into computation type constructor m, and value type v. The domain d is then
d = m v. The computation constructor is a subclass of Monad class, support-
ing additional operations which arc needed to interpret a particular language
feature. For instance, the ErrMonad is defined by

class Monad m => ErrMonad e m where eThrow :: e -> m a

which permits the use of eThrow in the interpretation of the Div tree node.
Similarly, class constraints are used to allow any supertype of Int as the value
v. By using the sophisticated class mechanism of Haskell minimnal requirements
for the domain of interpretation can be specified, which is crucial for modularity.

Referring back to Figure 2, horizontal components in each stage are grouped
first, using clex operator for composing lexical specifications, cpar for compos-
ing syntax, and monad transformers to create the final interpretation dowmain.
The description of each stage is then turned into functions, and these func-
tions are composed in sequence to provide the final interpreter as a function
String->String.

4. Implementation issues

Current implementation of the system is a collection of Haskell modules.
These modules implement abstract data types for the specification of lexics,
syntax, and semantics of language components, functions for transforming spec-
ifications into executable functions, as well as higher-order functions for merging
component descriptions into a final language specification.

4.1. Implementing stages of interpreter

Implementation of lexical analysis is based on transformation of regular ex-
pressions into Nondeterministic Finite Automaton (NFA) and Deterininistic Fi-
nite Automaton (DFA). In the first stage, a regular expression is used to derive
the NFA states of which are nodes of the regular expression tree ([1]). To avoid
the potential explosion of states in DFA construction, lazy transition evaluation
is applied to construct DFA states and transitions during the lexical analysis

({1).

24 M. Ivanovié¢, V. Kuncéak

Implementation of {concrete) syntax analysis is based on precedence pars-
ing. The parsing algorithm can be seen as a result of merging the translation
of expressions into postfix form, which uses the operator stack, and expression
evaluation using argument stack. The algorithm is extended to provide han-
dling of unary, binary and ternary infix expressions as well as error detection.
The precedence parsing turns out to be a convenient and effective choice when
modularity is essential.

Implementation of semantics derives from the previous work on Modular
Monadic Semantics. It uses monad transformers ([9], [8]) for monad composi-
tion and lifting to merge the computation effects required by various language
features. The semantics library contains definitions for identity and nondeter-
minism monad, as well as monad transformiers for errors, environments, state,
and continuations. Each transformer extends a monad with additional opera-
tions.

4.2 . Combining specifications

Combining specifications of various interpreter stages is central in our ap-
proach to modularity. We begin by describing the composition of semantics
specifications, since this was the original problem of modular interpreters.

The key problem in Modular Monadic Denotational semantics is that of
correct definitions of liftings. Liftings ensure that the monad operations in-
troduced by one transformer remain available after subsequent application of
further monad transformers. The first step in lifting is to associate with each
monad transformer a 1ift function which transforms the original monad values
into new monad values.

class (Monad m, Monad (t m)) => MonadT t m where
lift :: ma -> t m a
instance Monad m => MonadT (ContT c) m where lift = Cont . (>>=)

This function is enough to lift any operation not containing monad in the do-
main type, such as eThrow. The following declaration defines lifting of eThrow
through an arbitrary monad transformer, which means that applying any monad
transformer t to an ErrMonad yields not only Monad, but also ErrMonad.

instance (ErrMonad e m, MonadT t m) => ErrMonad e (t m) where
eThrow = 1lift . eThrow

There are more difficult cases of lifting. Providing the definition for these cases
amounts to describing interaction between individual semantic features ([8]).

Modularity of abstract syntax is based on the notion of the sum of algebras.
Abstract syntax trees, defined as constructors, represent algebra signatures. The
sum of algebras is defined using the Sum constructor.

newtype Sum f g x = Sum {uSum :: Either (f x) (g x) }

Modular language specifications in Haskell 25

After forming the sum of abstract trees of all components, the Fix constructor
is applied to create the recursive structure of the final abstract syntax tree.

newtype Fix f = In {out :: f (Fix £)}

The interpretation is captured by a multiparameter class Alg and the sum of
algebras is defined in the natural way. Finally, the notion of expression value is
defined given the interpretation of algebra.

class Functor f => Alg f a where phi :: f a -> a
instance (Alg f a, Alg g a) => Alg (Sum f g) a where
phi (Sum (Left ef)) = phi ef; phi (Sum (Right eg)) = phi eg
eval :: Alg f a => Fix f -> a
eval (In e) = phi (fmap eval e)

Modularity of a concrete syntax and lexical structure of the interpreted
language does not seem to have attracted much attention so far. The previous
approaches either used monolithic syntax analysis stage that generates abhstract
syntax trees, or applied parsing combinators to make a trivial extension to
abstract syntax from the previous paragraph. The first approach means giving
up modularity of the whole interpreter. The second approach requires excessive
use of parentheses since concrete syntax is a direct translation of abstract syntax.
The resulting parsers are inefficient. because of intensive backtracking in parsing
combinators. This is because the concrete expression grammar is not LL{1) and
no left factoring is perforined.

The choice of precedence parsing results iu efficient token-driven algorithm
which works as a deterministic push-down automaton. The modularity was
achieved using higher order functions. The type of functions such as infixOpL
is not just a state transition (denoted by ParsingItem b), but a function from
a->b to the transition.

infix0pL :: Int -> (b -> b -> a) -> (a -> b) -> Parsingltem b

Combining two syntax definitions can be done by a single higher-order function
cpar which modifies the r argument.

cpar parl parR = f where
f (Left x) r = parL x (r . Sum . Left)
f (Right x) r = parR x (r . Sum . Right)

The combined parser accepts the sum of token types as a new token type and
the sum of trees as a new abstract tree type. By a simple map of lexeme
specification lists we also achieve combination of the lexical structure.

5. Results

The main result of the paper is the implementation of the framework for
specification of semantics, abstract syntax, concrete syutax and lexical structure

26 M. Ivanovié, V. Kuncak

of language components in Haskell, using Hugs98 interpreter and relying on
multiparameter type classes and overlapping instances. This framework was
applied to implement 8 language features: arithmetics, comparison relations
and conditionals, environments (local names), exceptions (via continuations),
(call by value) functions, loops, nondeterminism, and state (assignable store).
Using higher-order functions from the previous paragraph, all of these features
were combiued into a working interpreter.

The most immediate advantage of this approach is the use of a general-
purpose language Haskell, which offers more flexibility than special-purpose for-
malisms. Specifications are statically type-checked and the their maintenance
is easier since there are no multiple program generation phases. Using a lan-
guage based on typed lambda calculus allows ilmmediate use of Denotational
Semantics definitions fully integrated with syntax definitions. Type classes en-
able the desired modularity, making the specification easy to manage and reason
about. The system of library modules itself is small, and can be included into
considerations of the interpreter semantics if needed.

6. Conclusions and future work

The implemented framework demonstrates that Haskell can successfully be
used for the complex task of highly modular programming language feature
specification. This approach allows fast creation of interpreter prototypes from
their formal specifications, helping debug semantic definitions and providing a
theoretical basis for future implementations. Using a general-purpose language
instead of specialized formalisins has many advantages, most of which can be
retained in the future interpreter or compiler generator.

Two major areas for future work are extending the flexibility of specification
and improving the efficiency of resulting interpreters. In this implementation we
have often faced limitations of the type system, even in the presence of language
extensions such as multiparameter type classes and overlapping instances. This
suggests that some sort of program generation (metacomputation) would be use-
ful. The intention is to keep as many benefits of the current system as possible
while turning to program generation approach. For the start, the safety of type
checking should be retained. This is in contrast to most compiler-compiler tools
that syntactically merge semantic actions with the generated code, deferring
the consistency checks to target program compilation. The alternative propose
here is an extension of the Haskell language (or its relevant subset) with new
constructs (syntactic sugar) for specification of syntax and lexical structure of
programming languages. The implementation of this language would perform
syntactic sugar elimination and a limited form of partial evaluation to obtain
an ordinary Haskell program.

Another potential line of work is compiler generation. The step from an
interpreter to compiler is conceptually a simple one, but it has formed the body
of work on compilation technology for several decades. Theoretical foundations

Modular language specifications in Haskell 27

of this are in specialization, partial evaluation and pass separation. Modular
monadic semantics has been used for compilation in [8] and [4], but we are not
aware of any system for compiler generation from specifications which would be
based on this approach. A promissing possibility for practial application is the
integration ([13]) of Modular Monadic Semantics with Action Semantics ([10]).

References

(1]
(2]
(3]
(4]

(5]
(6]
(7]
(8]
(9]
(10]
(21]

(12]

(13]

Aho, AV, Sethi, R., Ullman, J.D., Compilers: Principles, Techniques, Tools,
Adison Wesley, 1986.

Duponcheel, L., Using catamnorphisms, subtypes and monad transformers for
writing modular functional interpreters. http://cs.ruu.nl/people/luc, 1995.

Espinosa, D., Semantic Lego, PhD Thesis, Columbia University,
ww¥w.cs.columbia.edu, 1995.

Harrison, W.L., Kamin, S.N., Modular Compilers Based on Monad
Transformers, IEEE Int. Conf. on Computer Languages, Loyola University,
Chicago, 1998.

Hughes, J., Why Functional Programming Matters, Computer Journal 32(2),
1989.

Peyton Jones, S.L., Hughes, J., Haskell 98: A Non-strict, Purely Functional
Language. February 1999, http://haskell.org/report.

Kuncak, V., Modular Interpreters in Haskell, BSc thesis, University of Novi
Sad, 2000.

Liang, S., Hudak, P., Modular denotational semantics for compiler construction,
ESOP'96: 6th European Symposium on Programming, Linkoping, Sweden,
Springer- Verlag, 1996.

Moggi, E., An abstract view of programming languages, Technical Report,
ECS-LFCS-90-113, University of Edinburgh, 1990.

Mosses, P.D., A tutorial on Action Semantics. www.brics.dk/pdm, 1996.

Stoy, J.E., Denotational Semantics: The Scott-Strachey Approach to

Programming Language Theory, The MIT Press, Cambridge, Massachusetts,
and London, England, 1977.

Wadler, P., Monads for functional programming, In J. Jeuring, E. Meijer, cds.:
Advanced Functional Programming, Proc. of the Bastad Spring School, May
1995, Springer-Verlag LNCS 925, 1995.

Wansbrough, K., A Modular Monadic Action Semantics, MSc Thesis,
University of Auckland, New Zeland, 1997.

