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Abstract. Two approaches to modal theorem proving are presented. The
first approach is a direct one, developed specifically for modal logics. In
the second approach a translation procedure is included and a classical
first-order prover is used to the examined modal formulas. Some compar-
ative results and possible extensions are discussed.
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1. Introduction

In this paper we present two approaches to modal theorem proving. In the
first one we use a prover dedicated to modal logics [5, 6, 7]. In the second
approach, instead of working on the modal syntax including modal operators,
formulas are translated into the classical first-order syntax, and then a classical
prover [8] is applied. The idea behind the translation is to introduce special
relational symbols that represent modal accessibility relations [2]. In Section
2 we give an overview of the considered proving procedure. The full descrip-
tions, as well as the proofs of the given statements, can be found in [6, 8]. In
Section 3, the translation procedure is given, and some results of the provers
are considered. Section 4 contains a conclusion and some directions of further
investigation.

2. A modal and a classical proving procedure
2.1. Dual tableau for normal modal logics

The propositional modal language Lpjs consists of unary logical operators
(=, © and O), binary logical operators (A, V, and =), aset ® = {p,q,r,p1,...}
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of propositional variables and auxiliary symbols ( ”(” and ”)"). The atomic
formulas and formulas are defined as usual. For example p, ~(p -+ O(p V —q)),
and p A ©Op are formulas. A unifying notation which makes it easier to handle
similar kinds of formulas in the same way is introduced in 1, 10]. We assuine
that T and F are new formal symbols, and if A is a formula of propositional
modal language, then T 4 and F A are signed formulas. Signed non-atomic
formulas are grouped in «, 8, v, and = formulas. Figure 1 contains these types
of formulas and their respective components. Intuitively, an a-formula is true
iff its components are also true. A f-formula is true iff either the corresponding
B or fa-formula is true. To understand v and w-formulas we need the notion
of satisfiability in Kripke models {1, 4].

a | a1 [ a2 |
TANB [TA[TB) L _B_ |6 B | r— T 7 I
FAVB |FA| FB FAAB |FA|FB = = =
FAo>B |TA| FB TAVB |TA | TB zcgfx g’: fgql fj;
T A FA|FA TA->B | FA|TB -

F-A TA|TA

Figure 1: Signed formulas

Definition 1. A Kripke model is a tuple M = (W, R,v), where¢ W is a non-
empty set of elements called worlds, R is a relation over W x W called visthility
(o1 accessibility) relation, and v : W x & — {T, L} is a propositional valuation.
The pair (W, R) is called a frame.

A signed modal formula X is satisfied in o world w € W from the model M
{or true in w), denoted by w F=ar X, if the following hold:

e if X=Tp,pe® thenwky Tpiff v(w)p) =T,

e f X=Fp,pe® thenwhky Fpiffv(w)(p) =41,

o if X is a a-formuls o, w =y o iff w Epm o) and w Ear g,

o if X is a f-formula B, w =pr B iff w b=ar By or w b= i,

o if X is av-formula v, w =p v iff (Vu € W)((wRu) = u = vo), and

o if X is an w-formula w, w E=p 7 iff (Ju € W)Y((wRu) A u E=ur mo).

Now, a v-formula holds in a world w € W iff vy is true in every world visible
from w. A w-formula holds in a world w € W iff there is at least one world
accessible from w in which g is true.

Definition 2. A modal signed formula X is valid in o model A = (W, R, v) if
wEp X for any w € W. The formula X is valid in o collection of models f it
1s valid in every corresponding model.
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For an unsigned modal formula 4, wesay w =Y if w =T Y, and w |= =Y
if w = FY. Since an unsigned modal formula Y behaves like T Y, while =Y
behaves like F' Y, we say that Y is valid in a collection of models if the same
holds for T'Y'.

We are interested in some classes of models definable by the condition put
on the accessibility relation that are given in Figure 2 (a relation R is ideal iff
(Vz)(3y)zRy). Let L € {K,D,D4,DB,T, S4, B, 55} be a class of models. A
(signed, unsigned) modal formula is L-valid if it is valid in every L-model.

T R is reflexive

S4 | R is reflexive and transitive
B | R is reflexive and symmetric
S5 | R is an equivalence relation

D R is an ideal relation
D4 | R is ideal and transitive
DB | R is ideal and symmetric

Figure 2: Classes of models

Dual tableau procedure [5, 6, 7] is introduced as a tool for deciding validity
of formulas in the mentioned modal logics. To describe it, we have to define the
following notion.

Definition 3. A prefiz is an integer. If X is a signed formula and k is o prefir,
then k X is a prefized signed formula.

A dual tableau is a labeled tree whose nodes coutain prefixed signed sub-
formulas of the examined formula. The tableau construction is followed by the
construction of a frame which will present a paradigm of the class of frames and
corresponding modal models in which the validity of the formula is investigated.
Prefixes will be used as names of worlds in that frame. Since the rules depend
on the considered type of accessibility relation, we present the procedurc for the
logic S4, while the rules and the corresponding statements for the other logics
are similar. The construction rules (illustrated in Figure 3) are:

1. a formula 0 T A is placed in the tablcau’s root, where 0 is a prefix. The
relation p marks visibility between prefixes, and at the beginning contains
only (0,0). After introducing a new prefix, the relation p will be updated,

2. depending on the type of the formula at a node, one of the following rules
should be applied:

(a) if the node contains an a-formula with the prefix k, the branch where
the node is located extends with nodes containing the subformulas k ry
and k as,

(b) if the node contains a S-formula with the prefix &, the branch where the
node is located branches with nodes containing the subformulas k& 3,
and k f,,
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(c) if the node contains a v-formula with the prefix &, and if the same rule
has not been applied to the same formula and prefix &, the branch where
the node is located extends with a node containing the fornula v, with
the new prefix &'; the pair (k, k') is added to the relation p. and its
reflexive and transitive closure is made; if the same pair (formula v and
prefix k) has already introduced a node containing the prefix &” and
formula vy at some other place, the branch containing the considered
node is extended with the node containing the prefixed formula k" vy,

(d) if the node contains a w-formula with the prefix k, let the prefix &' be
visible fromn k, and suppose that this rule has not been used at that node
and prefix &'. If this rule has not been used at all at the exaimnined m-node,
the branch where the node is located extends with a node containing
the mg-formula and the prefix k'; say that this new node be the first
mg-descendant of the examined node; if this rule has been used at the
examined w-node, the branch containing the node branches, and the new
extension is a node with the corresponding k' mo-formula. The branching
is domne in the predecessor of the first mg-descendant of the exainined 7-
node, so that every mg-node (corresponding to the examined m-node)
belongs to a different branch.

ka kB kv kw

| / A\ | /A IR

kcn kﬁl kﬁg k'll/(] k[)?!'o k‘lﬂ'o k,,ﬂ'q
|

kag

Figure 3: The modal tableau reduction rules

Every node is reduced by the rules at most once on a particular branch.
After that the node is finished. m-nodes are the only exceptions. A m-node with
a prefix k is finished if there cannot be any new prefix k" visible from & and the
m-rule has been applied to every prefix &' visible from k. The nodes containing
signed atomic formulas are also finished, for no rules can reduce them. A branch
is finished if it cannot be extended by the reduction rules. The S4-dual tableau
is the first tree from the sequence containing only finished nodes.

Let 7 be an $4-dual tableau. An S4-interpretation I is a mapping from the
set PP of prefixes from T into a set W of worlds of some S4-model M = (W, R, v)
such that (Vk, k' € P)(kpk' = I(k)RI(K')). A set U of prefixed signed formulas
is satisfied under an S4-interpretation I if for every & X e U, I(k) = X.

Theorem 4. Let T be an S4-dual tablean whose root contains o formula 0T A,
and P be the set of all prefizes from T. The formula A is S4-valid iff for each
S4-model M = (W, R, v), and for each S{-interpretation I : P — W there is at
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least one branch of the tableau whose set of all prefived atoric signed formulas
s satisfied under the interpretation I.

To examine whether or not the tableau’s branches are satisfied for cvery
interpretation, we connect satisfaction under interpretation with validity in the
classical propositional logic using independence of values of atomic formulas in
different worlds of Kripke models. Every prefixed atomiec signed formulas is
considered as a classical propositional signed variable where the picture of the
prefix becomes an index. For example, instead of k T' p (k F p) we use T pypy
(Fpriy)- In that way the sets of all prefixed atomic signed formulas from
finished branches become sets of classical atomic signed formulas called dual
clauses. A dual clause is satisfied under a classical propositional interpretation
J if every prefixed atomic signed formulas from the clause is satisfied under the
interpretation .J. A set of dual clauses is satisfied under a classical propositional
interpretation J if at least one clause is satisfied nnder the interpretation .J. A
set of dual clauses is valid if it is satisfied under every classical propositional
interpretation. The following rule is used to resolve dual clauses [3]:

if S; and S, are dual clauses, T’ A € S; and F A € S5 for an atomic
formula A, by resolving these clauses we get their resolvent:

R(S1,82,4) = (S \{T A}) U (S \ {F A}).

If § denotes the empty clause, and R{(S) = SU {C : C is the resolvent of the
two clauses from S}, Ro(S) =S, R;(S) = R(R:—(S)), and R*(S) = U{%(S) :
i > 0}, the following theorem holds:

Theorem 5. A set S of dual clauses is valid iff § € R*(S).

A tree t coutaining 0 T' A in the root and constructed using the above rules
is a proof if the emipty clause belongs to the set B*(CI(t}}, where Cl{t) denotes
the set of dual clauses that correspond to finished branches of . From Theorem
4 and 5 the theorem completeness for the S4-dual tableau procedure is obtained:

Theorem 6. A modal formula A is S4-valid iff it has a finite proof in the S4-
dual tableau system.

For some formulas (e.g. ©Op) the S4-dual tableau construction, as described
above, never terminates. Thus, for the mentioned formula (which is not S4-
valid) any theorem prover which is a straightforward implementation of the
S4-dual tableau system does not give the answer. There is a modification of
the dual tableau construction rules [1, 6] which guarantees that the procedure
is finite, and consequently a decision procedure. It is based on the finding of a
periodic behavior in a chain of prefixes and sets of signed formulas associated to
them. However, the modification is time-expensive, and it is not implemented
in the prover we discuss here [5, 7].
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2.2. Dual tableau for the full first-order logic

The first-order classical language Lo consists of classical logical operators
and quantifiers (-, A, V, —, ¥, and 3), a set of variables and auxiliary symbols
2 "(” and ”)”), and sets of relation and functional sywbols. In addition
to the ¢ and g formulas, there are two additional types of sigued formulas
corresponding to quantified formulas that are given in Figure 4, where A(t/x)
denotes the formula obtained from A by replacing every free occurrence of the
variable z in A by a term # which is free for 2 in A.

L [ o | o [ o0 |
T (Vz)A(z) | T A(t/x) F (Vo)A(z) | F A(t/x)
F (3x)A(z) | F A(t/x) T (3x)A(z) | T A(t/x)

Figure 4: - and é-formulas

During the first-order dual tableau coustruction some new syinbols are intro-
dueed. They are so-called duinmy-variables (or duminies) and Skolem function
symbols. We use X, X, Xy, ..., aud f, fi, f1, ..., to denote dummies and
Skolem symbols respectively. The first-order dual tableau for a closed formula
A is constructed using the following rules (- and d-rules are given in Figure 5):

1. the formula T' A is placed in the tableau’s root,

2. depending on the type of formula in a node, one of the following rules should
be applied:

(a) if the node contains an a-formula, the branch where the node is located
extends with nodes containing the subformulas a; and .,

(b) if the node contains a B-formula, the branch where the node is located
branches with nodes containing the subformulas 31 and /2,

(c) if the node contains a é-formula, the branch where the node is located
extends with a node containing the dg(X) formula, where X is a new
dummy, and

(d) if the node contains a y-formula, the branch where the node is located
extends with a node containing the v (f(X1,...,X,)) formula, where f
is a new Skolem function symbol, and X, ..., X,, are dumnies whose
scopes cover the reduced subformula (the scope of a dummmy X is the
scope of the guantifier whose reduction introduces X).

Let 7 be a dual tableau, and Dvar(7) the set of all dumimy variables from
7. The Herbrand universe H(T) contains all well-formed ground terms over the
symbols that appear in 7, i.e., the terms from H(7T) do uot contain dunnnies
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s ¥
I |
é-O(X') '70(f(‘Y1’-~-aXn))

Figure 5. - and §-rules

or variables. If H(7) contains no constant, a constant A is added to it. A
replacement w is a mapping from Dvar(7) to H(7). This definition is extended
in an obvious way, so that every replacement maps formulas to formulas. For
example w(T AV B) = w(T A) Vw(T B). Let X be a signed formula which
appears in a tableau 7. Let I be a classical first order interpretation. We say
that I = X if there is a replacement w, such that I | w(X). A finite set of
formulas is satisfied under an interpretation I if the conjunction of all forinulas
from the set is satisfied under than J. Similar to Theorem 4 we have:

Theorem 7. Let T be a first-order dual tableau whose root contains o formula
T A. The formula A ts valid iff for each interpretation I there is at least one
branch of the tableau whose set of all atomic signed formulas is satisfied under
the interpretation I.

Again, let a dual clause be a set of all signed atomic formnulas from a finished
tableau branch, 7 be a finished dual tableau, and CI(T) be the corresponding
set of dual clauses. To examine validity of a set CI(T) we use the following dual
resolution rule

if S1 and S> are dual clauses, Ly C Sy, and Ly C Sa, and p is the most
general unifier such that p(L,) = —p(Ly) = {L}, where L is a signed
atomic formula, a resolvent of S| and S, is

R(S1,5,L) = p((S1 \ L) U (S2 \ L2))

and have the following statements:

Theorem 8. A set S of dual clauses is valid +ff B € R*(S).

Theorem 9. A formula A is valid iff it has a finite proof in the first-order dual
tableau system.

3. The translation procedure

It is already known that the mentioned propositional modal logics can be
embedded in the classical first-order logic by the translation 7 (we use the fol-
lowing notation: let = € {z1,z2}; if z = xy, then z' = z,, and vice versa) [2]:

e 7(p,z) = P(x), for every propositional variable p € ®,
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o 7(—A,x) = ~71(A4, 1),

T(AAB,x) =7(4,2) A7(B, 1),

T(AV B,z) =7(A,z) V7(B, z),

7(A = B,z) =7(A,1) = (B, x),

7(0A, z) = (Vz')(R{x,z') = 7(4,x")), and
o 7(CA, x) = (') (R{w,x') A7(A,2")).

The translation of a modal formula A describes the corresponding conditions on
Kripke models that must be satisfied, if A is valid. We use Des(L) to denote a
formula which represents the conditions on the accessibility relation for L. For
example, Des(S4) = (V) R(xy,x1) A (Vo ) (Vo) (Vi) (R(x1, 22) A B2, 23) —
R(xy,z3)). The following theorem holds:

Theorem 10. Let L he one of the mentioned modal logics. A propositional
modal formule A is L-velid if and only if Des(L) — (Vx)7(4.xy) is a valid
first-order formula.

Hence, instead of working on the original modal formulas. we can trans-
late these formulas so that classical proof systems can be used. Note that in
a translated formula propositional variables become unary relational symbols,
and that a new binary relation symbol R appears. The symbol R represents
the accessibility relation. Table 1 contains some results obtained by the inmple-
mentations [7] and {8] of the dual tableau procedure for the modal logic 84 and
the first-order dual tableau procedure which is applied on the translated formu-
las. Both provers have been compiled as 32-bit applications using the Visual C
compiler and run on a PC compatible computer with an Intel 133MHz Pentium
processor, 32MB RAM and Windows 98SE. The signs (r) and oo denote that
the corresponding formula is not valid, and that there is no enough meiory to
finish a proof, respectively. The time unit is 10~ ?sec.

Figure 6 contains the modal dual tableau for the formula OFP — P aud the
first-order dual tableau for the corresponding translation Des(L) — (Vi ) (V)
(R(xy,x3) = P(z2)) = P(x1)) of the formula. The letters v, 3, v, d, » and
7 denote which of the reduction rules is applied. It is obvious that, due to the
appearance of the Des(L) subformula and the first-order nature of the right-
hand part of the translated formula, the second tableau is considerably greater
than the first one. There are also more clauses in the second approach and
the corresponding proof is almost 5 times longer than the first one. Results
are similar in the last two examples given in Table 1. However, note that the
execution times in these examples are not very long, i.e. they are less than 3scc.
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| Modal formula [ time ] First. order translation [ time |
oP - P 60 Des(L)_)*P((::)t))(fﬂﬁ()ifi)()w1,wz) 280
Des(L) = (Ve (V) (R(z1,22) —
g(oP — P)— OpP o (Ve W (R(za, xy) = Play)) = Paw))) (r) 16530
= (Ya)(R(z1,x2) > P(z32)))
Des(L) — (Va1 )((Va2)(R(x1, z2) —
Az ) (R(z2, 1) A P(x1))) —
ooP — J0aoP 0 (Vo) (R(z1,z2) = (3e1)(R(z2, 21)A 2910
(sz)(R(.’El 5 :[‘2) —
s o ) P
es — (Vx o )(R(z1,c2)A
onp > (Vo) (Re2,21) > Pl ) () 10
Des(L) = (Ya1)(Px1) — _
P oOP 110 (3;2)(1{(111,“‘) N Pi(:;m) 270
Des(L) = (Va1)(Vaz)(R(z1, x2)
O(Pv Q) — (QPVaQ) | (r) 220 ((v;’)gﬁfif)nvff?&;’) R (r) 1380
(Yaz)(R(x1, x2) = Q(x2))))

Table 1: Some results of the direct and indirect modal theorem proving

On the other hand, there are cases where the indirect approach is more suitable
than the direct one. They are illustrated by the examples 2 — 4. As we have
already mentioned, the periodicity test is not implemented in the modal prover.
Thus, if there is a ¢ combination of operators in the considered formula the
indirect approach gives better results.

TOP—> P
/ \ B
FOP TA
| =
F P

Fig. 6. Two tableaus for P — P and its first-order translation

T Des(L) — (

/
F Des(L)

/\3

V:l:l)((VIg)(R(.TT],.TQ) — P(:I'g)) — P(lll))

T (Vo1)((Vz2)(R(z1, 22) = P(x2)) = P(xy1))

y
T (V.’L’g)/(R(f(),.’L‘z) = P(z2)) = P(f())

\ B
FI(sz)(R(f(),:z:-z) — P(z2)) T P(5())
é

Fﬁm»mamm
T R(f(),X)

|
F P(X)
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4. Conclusion

We have presented two approaches to modal theorem proving. In the direct
one, the modal dual tableau and the resolution procedure are directly imple-
mented in the source code of the prover. On the other hand, in the indirect
approach, the prover corresponds to the classical first-order logic. but a transta-
tion procedure from the modal to the classical framework is included. There is
no doubt that the direct prover is more efficient because the semantics of the ac-
cessibility relation is directly implemented in its code, while the indirect prover
handles it at the syntactical level of formmulas. However, the second approach is
more flexible. For examnple, we can easily change the type of the accessibility
relation by giving another Des(L) part of the translation, while in the direct
approach we have to modify the source code of the prover. Tlere arc modal
logics where many O-operators are considered. For exainple, in logics of knowl-
edge, O, is read as ’agent i knows’. In the indirect approach we can handle such
a situation. The only thing we have to do is to change the translation procedure
so that a different relation symbol R; corresponds to every accessibility relation
‘and operator O;.

There is another place in the direct modal theorem proving which is conve-
nient for the application of dummies and Scolemization. Modal operators can
be interpreted as quantifiers over possible worlds. We hope that dummies and
Scolemization can reduce the number of new worlds in the application of the
modal » and 7 reduction rules. Also, some strategies for the classical resolution
that work well under thie assumption of the considered accessibility relation can
be developed to give more cfficient proofs.

While we have been finishing this paper, we have found the paper [9] where
the similar ideas are considered. The paper is, however, nmore abstract. and
no information about results of any theorem prover is presented. On the other
hand, an extension of the above translation is given so that first-order modal log-
ics with constant or flexible domains, and rigid or non-rigid functional symbols
can be examined.
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