Novi SADp J. MATH.
VoL. 30, No. 2, 2000, 95-111

Proceedings of the TARA 2000 Conference
Novi Sad, Yugoslavia, September 6-7, 2000

A COMPARATIVE ANALYSIS OF SEVERAL MOBILE
AGENT SYSTEMS

Dragoslav Pesovié¢!, Zoran Budimac!

Abstract. This paper considers a couple of the most important mobile
agent systems in use today. We will take into account enabling technolo-
gies on which a mobile agent system is built, as well as concrete implemen-
tation techniques for the key concepts of mobile agents, such as mobility,
communication mechanisms, and security.

AMS Mathematics Subject Classification (1991): 68N25

Key words and phrases: mobile agents, internet, network, distributed sys-
tems

1. Introduction

The term agent is usually defined as an autonomous software program that
runs on behalf of a user. It performs its actions with some degree of proactiv-
ity and reactivity, and may also exhibit a certain level of the key attributes:
learning, cooperation and/or mobility [5).

A mobile agent is a program which may migrate from one node to another in
a heterogeneous computer network. The mobile agent can suspend its execution
at any time, transport itself to another computer in the network, and continue
the execution on that new network location. On the target computer, an agent
does not restart its execution from the beginning — it coutinues where it left
off.

Since it inherits some of the characteristics of an agent, a mobile agent is
also an autonomous entity, because once invoked it will autonomously decide
which network locations to visit and what instructions to perform. This kind of
behaviour is either defined implicitly through the agent code or instead specified
by an itinerary, which must be flexible enough to be modifiable at. the agent’s
runtime.

A mobile agent is merely a program, so it requires some kind of an execution
environment installed on potential hosts to run on. Thus, all mobile agent sys-
tems have an agent server running on potential host machines in the network. Its

Unstitute of Mathematics, Faculty of Science, University of Novi Sad, Trg Dositeja
Obradoviéa 4, 21000 Novi Sad, Yugoslavia , e-mail: {dragoslav, zjb}@unsim.ns.ac.yu



96 Pesovié D., Budimac Z.

primary task is to provide an environment in which mobile agents can execute.
The agent server also provides the functionality for agents to migrate, to com-
municate with each other, as well as to interact with the underlying computer
system. Furthermore, this infrastructure has to provide security mechanisins:
preventing malicious agents to attack other agents or the underlying computer
system on one hand, and avoiding manipulations of the hostile agents by a mali-
cious computer system on the other. It may also provide some support services
which relate to the agent server itself, services to support access to other mobile
agent systems, etc. '

This paper provides an analysis of various mobile agent implementations.
After a brief presentation of a few representative mobile agent systeins, we will
examine implementation techniques for mobility, present commmunication mech-
anisms implemented in every particular system, and discuss security concerning
mobile agent systems.

2. Background

This section briefly describes mobile agent systeins that are subject to our
examination, introducing the basic architecture of these systems. A wide variety
of programming languages has been used for writing mobile agents, as e.g. Tcl
being the basis of Agent Tcl [4]. On the other hand, most of today’s mobile
agent systems are built on top of the Java system, like Aglets ([7], [11], [14],
[16]), Mole ({1}, {15]), Concordia ([12], [13]) and Odyssey ([2], [3]). Howcver,
some projects, like Telescript [18], have made an cffort to build a mobile agent
system from the ground up.

2.1. Agent Tcl

Agent Tecl [4] is a mobile agent system under development at Dartmouth
College. The Agent Tcl language is an extension of the Tool Command Language
(Tel). The extra commands for agent migration and message passing give Agent
Tecl scripts powerful mobility capabilities. Agent Tcl uses a modified Safe Tcl
interpreter to execute scripts.

Agent Tcl has evolved from a Tcl-only system into a multiple-language sys-
tem D’Agents, currently consisting of the three subsystems (Agent Tcl, Agent
Java and Agent Scheme), that support Tecl, Java and Scheme, respectively.

D’Agents have two main components: a server that runs on each machine,
and an execution environment for each supported agent language. The basic
task of the agent server is to accept incoming agents, authenticate the identity
of the owner, and pass the authenticated agent to the appropriate execution
environment. Each execution environment includes the interpreter that actually
executes the agent, a state capture module that captures the complete state of
the agent when the agent decides to migrate to a new machine, and a security-
enforcement module that enforces the security policy from the resource manager.



A comparative analysis of several mobile agent systetns 97

2.2. Telescript

Telescript [18] was the first commercial mobile agent system, and was devel-
oped by General Magic. Telescript models a network of computers as a collection
of places, which are equivalent to the concept of an agent server where static
services are located at the host. Places are actually special objects that repre-
sent sites. A place offers a service to the mobile agents that enter it. The typical
place is permanently occupied by one, stationary agent, which represents the
place and provides its service.

Telescript has three major components: the language in which agents and
places are programmed, an interpreter for that language called the Telescript
engine, and communication protocols that let engines in different computers
exchange agents in fulfillment of the go() instruction. Contrary to the name.
Telescript is not a scripting language. Telescript agents are written in a completo
object-oriented language that supports objects, classes and inheritance. The
object-oriented model and the syntax are very similar to those of C++ and Java.
Telescript programs are compiled into a portable intermediate representation,
called low Telescript, analogous to Java bytecode. Telescript programs can run
on any network site with a Telescript execution engine that maintains the places
at the site and executes incoming agents. The engine continuously writes the
internal state of executing agents to a nonvolatile store so that the agents can
be restored after a node failure.

2.3. Odyssey

Despite the fact that until recently Telescript was one of the most secure,
fault-tolerant, and efficient mobile agent systems, it has been withdrawn from
the market, mainly because it was superseded by the rapid spread of Java. That
is why General Magic has now abandoned the Telescript project and embarked
on a similar, Java-based system called Odyssey [2] that uses the same design
framework. Like all the mobile agent systems that are based on Java, Odyssey
is implemented as a set of Java class libraries, including those for agents and
places. Agents and places are Java threads and they are created by subclassing
the Odyssey agent class and the Odyssey place class, respectively.

2.4. Aglets

Aglets [14] are another Java-based mobile agent system being developed by
IMB Research Centre, Japan. An aglet is a running Java program that can inove
from one host to another in a network, carrying along not only its program code
but also its state information. All aglets are derived from an abstract class called
Aglet.

Aglets use an event driven approach to mobile agents (what is analogous to
the Java library Applet class). Each aglet implements a set of event handler
methods that define the aglet behaviour. Before any major event in an aglet’s
lifecycle, an event handler method is called to allow an aglet to prepare for



98 Pesovi¢ D., Budimac Z.

the event. An aglet can decide whether to partake in the event or not. If the
aglet decides not, to participate, it throws an exception. If, on the contrary, it
decides to participate, it must complete any unfinished business and prepare
itself for the participation in the event. An aglet can experience many events
in its lifecycle. It can be created, cloned, dispatched, retracted, deactivated,
activated, or disposed off. The programmer impleinents a particular agent class
by inheriting default implementations of these callback methods from the Aglet
class, and overriding them with application-specific code.

An aglet interacts with its environment through an AgletContext object.
An aglet can obtain a reference to its current context by invoking
getAgletContext (), a method it inherits from the base class Aglet. An aglet
can use this reference to obtain local information, like the address of the hosting
context, or to invoke numerous methods of the aglet context such as
createAglet() or retractAglet(), which allow an aglet to add new aglets
or get an old aglet back to its local host. Once an aglet has been dispatched,
the context object currently occupied is no longer available, and on arrival the
destination context object is attached instead.

The AgletProxy interface class provides a handle that is used to access the
aglet. The AgletProxy object, hearing in mind that it is always locally accessi-
ble, provides location transparency by forwarding requests to remote hosts and
returning results to the local host. It also acts as a shield that protects the
methods of the aglet object from direct access by other objects.

Agent servers upload aglets through class loaders that know how to retrieve
the class files and the state of an aglet from a remote agent server.

2.5. Mole

Mole [1], the agent system developed at the University of Stuttgart, is another
framework using Java as the language of implementation as well as of the agent
development. Like various other models, Mole is mainly based on the concepts
of agents and places.

There are two different kinds of agents, the system agents and the user
agents. System agents are agents with access to system resources, providing
controlled, secure abstractions of these resources inside the agent system. User
agents may only communicate with other agents and have no direct access to
system resources.

An agent system consists of a number of places, being the home of various
services. Places provide the environment for safely executing local as well as
visiting agents. The functionality of a place is divided in two parts, the engine
and the location, allowing the execution of several locations on one machine.

The location manages the agents executed at this location. It starts the
received agent, and offers some basic services such as migration, communication,
vellow page service and others.

The engine manages the locations executed on a system. It offers services
common to the locations such as the class server and inter-location comnuni-



A comparative analysis of several mobile agent systews 99

cation. The class server is responsible for getting unknown classes needed for
agents about to be executed on a location of the engine.

2.6. Concordia

At Mitsubishi Electric Information Technology America another framework
for the deploymeut of mobile agents, Coucordia [12], has been developed. The
Concordia system consists of nultiple components, all written entirely in Java.
The main component is the Concordia server inside which reside various Concor-
dia managers, such as security, persistence, event, queue, directory managers,
and a service bridge. A Concordia agent is also a Java program being managec,
including its code, state and movement, by the Concordia server.

3. Migration

The main feature of mobile agents is their ability to migrate from one ma-
chine to another in a heterogeneous computer network. The migration is ac-
tually a mechanism of an agent that enables the continuation of its current
execution on another network location. The agent can suspend its execution
at an arbitrary point, transport itself to another node (being removed from the
source machine), and resume execution on the new node from the point at which
it left off.

If we consider an agent state consisting of the data state (the contents of
its instance variables) and its execution state, for a complete migration it is
necessary that the underlying system captures the complete agent state and
transports it together with the agent code to the destination node. If the agent is
successfully received at the destination node, its state is restored automatically.

In Telescript we have exactly that kind of scenario, being accomplished
by the built-in go() instruction. The instruction requires the ticket, data that
specifies the agent’s destination, and the other terms of the trip, such as the
means by which it must be made or the time by which it must be completed.
Upon the execution of this command, the agent is transported to the target site
where it continues execution from the line after the go() statement. However, if
the trip cannot be made, for example if the means of travel cannot be provided
or if the trip takes too long, the go() instruction fails and the agent handles
the exception. In this scenario, the agent migration is completely handled by
the Telescript engine. :

The scenario described above is very attractive from the programiner’s point
of view because it provides capturing, transport and restoration of the entive
agent state being done transparently by the underlying system, so the program-
mer does not need to worry about saving the relevant state information just
before the migration. However, the interpreter of the agent language must al-
low capturing of the entire execution state including the heap, the stack and
even the registers. For security reasons, only a small number of languages allow



100 Pesovié D., Budimac Z.

the state externalization on such a high level. The language security archi-
tecture makes it impossible to directly save the thread execution state. Still,
the complete migration scheme could be achieved by modifying the interpreter,
which is the actual solution chosen by Agent Tecl.

Agent Tcl uses a similar migration model as Telescript. The built-in state-
ment for the agent migration is agent_jump(). As with the Telescript’s go()
instruction, when this command is issued, the execution environment completely
handles the transportation of the agent, and if the trip succeeds, restores the
agent’s execution state on the destination. Since the Tcl interpreter provides
absolutely no support for capturing program state, this is an Agent Te¢l exten-
sion of the langunage. There is also the fork operation, which is the same as the
jump operation except that it clones the agent onto the new machine. Both
copies of the agent continue execution from the point of the fork operation.

Modifying interpreters to support this complete state capture is time-
consuming and unattractive in a commercial setting. Besides, Java 1.1 intro-
duces class serialization allowing an entire class instance to be written to a byte
stream including the object’s methods, attributes and their values. However,
serialization will only save an imnage of the heap, without saving the execution
stacks or program counters (that is the values of local variables in methods),
because Java virtual machine does not allow the explicit referencing of the stack,
for security reasons.

Most Java-based mobile agent systems use class serialization to support
agent migration without modifying the Java virtual machine. Before it is sc-
rialized, an agent must place on the heap (i.e. its instance variables) any in-
formation it will need to continue the execution properly as a newly activated
agent.

In all examined Java-based mobile agent systems two approaches can be dis-
tinguished. According to the first approach, after the invocation of the migrate
instruction, an agent server handles the migration process in the way that it
sequentially invokes particular methods of a migrating agent that each mobile
agent should implement. First step is the invocation of a stop method. In this
method, the agent should prepare itself for migration, saving all the information
(required for resuming) in its instance variables. The agent is then serialized
and sent to the destination, where it is recreated using the received byte stream.
Finally, a server invokes a start method, which represents the entry point for
the agent’s main thread. In this method the agent decides, depending on the
contents of its instance variables, what to do next.

Some systems, however, build upon their migration primitives to provide
higher-level abstractions, such as an itinerary, which contains a list of servers to
visit, and the corresponding code to execute at those locations. The agent sys-
tem automatically invokes the correct method. When the itinerary is exhausted,
the agent’s journey is complete. To assure agent autonoiy, the migrating agent
must be allowed to dynamically modify its itinerary.

In Odyssey, there are two types of agents created by inheriting the Odyssey



A comparative analysis of several mobile agent systews 101

Agent class or its subclass, the Odyssey Worker class. An Odyssey agent must,
restart execution on the destination machine. The agent examines the current
state of its objects to decide what to do next. An Odyssey worker must follow
an itinerary in which specific methods are executed at specific destinations.
The agent specifies its itinerary before its first migration and can modify the
itinerary at any time.

In Aglets, each aglet implements an event handler method onDispatch(),
invoked just before an aglet is about to be dispatched to a new location. The
method onDispatch() is an event handler method because an agent server
invokes it after another method, dispatch(), is called. An aglet can invoke
dispatch() on itself or on another aglet. The invocation of the onDispatch()
method indicates to an aglet that it is about to be sent to a new host, the URL
that is specified as a parameter to the onDispatch() method. In the body of
onDispatch(), the aglet must decide whether or not to go. If it decides to go, it
must complete any unfinished business and prepare itself for serialization. When
it returns from onDispatch(), its state will be serialized and all its threads ter-
minated. The class files and the serialized state will be then sent to the new host.
where the aglet will be resumed. Eacl time an aglet begins execution on the
host, the host agent server invokes an initialization method onArrival () on the
aglet. When an initialization method returns, its run method is finally invoked.
The programimner is to iinplement further control flow in this method. Aglets
have also provided a travel itinerary for specifying complex travel patterns with
multiple destinations and automatic failure handling.

Mole uses a very similar migration scheme. After the invocation of the
migrateTo() method, the stop() method is invoked where the agent has to
prepare for serialization. After successful arrival on the destination, the invo-
cation of the agent’s init () method follows. When that initialization method
returns, the start () method is invoked, and the new lifecycle of an agent begins.

Concordia supports the agent migration only through the concept of agent
itineraries. An agent initiates the transfer by invoking the Concordia server’s
methods. This signals Concordia server to suspend the agent and to create its
persistent image to be transferred. The Concordia server inspects an object
called the Itinerary, created and owned by each agent, to determine the appro-
priate destination. After being transferred, the agent is queued for execution
on the receiving node. When the agent is to begin the execution again, it is
restarted on the new node according to tlie method specified in its itinerary.

4. Communication

One of the basic abilities of an agent is its ability to commmunicate with other
entities in the mobile agent system. Agents may need communication mecha-
nisms for access to the host system resources or for the purpose of cooperation
with another agents. There are various communication protocols ranging from
the low level protocols, like byte streams, messages or even remote procedure



102 Pesovié D.. Budimac Z.

calls, to the high level communication protocols, like KQML?, which can be im-
plemented either on top of these low level protocols or as agents, offering special
communication protocol as a scrvice.

Considering an inter-agent interaction, various types of commmunication can
be distinguished. When two agents want to interact, a synchronous conununi-
cation mechanism seems to be the most appropriate cominunication paradigm
for a client/server style of interaction, while an asynchronous mechanism is re-
quired to support peer-to-peer communication patterns. However, in the case
of anonymous agent group interaction, a sender does not know the identities of
the agents that are interested in the message sent. This type of conununication
is supported by group comrnunication protocols: the concept of tuple spaces, as
well as sophisticated event managers.

4.1. Communication in Telescript

In Telescript an agent can interact with other agents in two ways. The agent
can meet with an agent that is in the same place. To 1neet a co-located agent
an agent executes the Telescript’s meet instruction. The instruction requires
petition, data that specify the agent to be met, and the other termms of the
meeting, such as the time by which it must begin. The implementation of the
meeting method contains the agent’s negotiation strategies, which may include
rejecting holding a meeting under certain conditions or with the certain type of
agents. If the meeting cannot be arranged, the meet instruction fails and the
agent handles the exception. However, if the meeting occurs, the two agents
receive references to each other’s objects and communicate by invoking each
other’s methods.

In addition, an agent can connect to a remote agent. To make connection to
a distant agent, an agent executes the Telescript language’s connect instruction.
This instruction requires a target and other data that specify the distant agent,
the place where that agent resides, and the other terms of the connection, such
as the time by which it must be made and the quality of service it must provide.
If the connection cannot be made, the connect instruction fails and the agent
handles the exception. However, if the connection is made, the two agents pass
objects along the connection. An event-signalling facility is also available at the
language level.

4.2. Communication in Agent Tcl

Agent Tcl provides extensions to the Tcl language for an inter-agent com-
munication. These extensions allow agents to communicate through either low-
level or high-level communication protocols. Agent Tcl provides bytestreams
and asynchronous message passing at the lowest level. A message is an arbi-
trary sequence of bytes with no predefined syntax or semantics except for the
two types of distinguished messages. An event message provides asynchronous

2 Knowledge and Query Manipulation Language



A comparative analysis of several mobile agent systems 103

notification of an important occurrence, while a connection message requests or
rejects the establishment of a meeting. A meceting is a named message stream
between agents and it is more convenient and efficient than message passiug.
Higher-level protocols are implemented at the agent level. Currently, Agent Tcl
implements a flexible RPC protocol, which has been built on top of the direct
connection mechanism.

4.3. Communication in Aglets

In Aglets, two agents can communicate either by invoking each other’s meth-
ods (supported through Java RMI) or by means of a message-passing scheme
that provides for loosely coupled asynchronous as well as synchronous peer-to-
peer communication between agents.

To interact with each other, aglets do not invoke each other’s methods di-
rectly. Instead, they go through AgletProxy objects, which serve as aglet rep-
resentatives. This is done in order to protect agent objects from being directly
modified. The aglet being represented by a proxy might be local or remote.
but the proxy object is always local. Only aglets, not proxies, migrate across
the network. A proxy communicates with a remote aglet that it represents by
sending data across the uetwork. The proxy object provides a set of methods for
communicating with the represented object. These include requests for an aglet
to take actions, such as migration, cloning, destroying aud suspending. The
aglet that has been requested to take an action can comply, refuse to comply,
or decide to comply later.

The proxy also allows an aglet to send a message to another aglet, either
synchronously or asynchronously. For this purpose a Message object is supplied,
which carries a string to indicate the kind of message, plus an optional piece of
data, either a string or an instance of a Java’s primitive type. To send a message,
an aglet can create a Message object and pass it as a parameter to one of the
following methods of the proxy object: sendMessage (), for sending synchronous
messages, or sendAsynchMessage (), for sending asynchronous ones. Aglets also
provide a white board mechanism allowing multiple agents to collaborate and
share information asynchronously.

4.4. Communication in Mole

In Mole, the following two low-level communication protocols are realized:
RPC and message passing. The remote procedurce call is an action-oriented,
synchronous communication mechanism. With its help, an agent may call any
public method of another agent, no matter whether it is local or remote. If
a method of an agent is called by another agent, the method is executed con-
currently to the normal control flows in the called agent. While an RPC is
executed, the called agent must not migrate. Messages are data-oriented coin-
munication mechanism, generally used to transfer data between processes. The
send operation is an asynchronous mechanism, which returns immediately. [t



104 Pesovié D., Budimac Z.

gets as parameters the address of the sender (a globally unique agent name and
a location name), the address of the receiver and the contents of the message (an
object). The message is then sent to the destination location (location of the
receiver). If the receiver exists at the destination location, the message is deliv-
ered at once by calling a special method, which has to be implemented within
each agent. This method is always executed in an own thread, even if it was a
local message. If the receiver does not exist at the destination, the message is
queued for some time, and then, if yet not delivered, sent back. There is no dif-
ference between local or global communication in the use of these mechanisms,
providing some kind of access transparency.

A session defines a communication relationship between a pair of agents.
Agents that want to communicate with each other should establish a session
before the actual communication is to be started. After a session setup, agents
can interact by using RPC or message passing. When all information has been
communicated, the session is terminated. Sessions nmay be intra-location as
well as inter-location communication relationships. In order to preserve the
autonomy of agents, each session peer must explicitly agree to participate in
the session. While an agent is involved in a session, it is not supposed to
move to another location. However, if it decides to move anyway, the session is
terminated implicitly.

Mobile agent application can be modeled as a sequence of reactions on events,
which in turn generate new events. Through an event service, Mole additionally
supports cvents as a well-suited concept for inter-agent synchronization, and
they are especially used in coordination of ageut groups.

4.5. Communication in Concordia

Concordia has extensive support for agent comumnication, providing for lo-
cal method invocation (after co-location) at the lower level, and an asyuchronous
event-signalling as well as a specialized group collaboration mechanisin at the
higher level. Concerning communication mechanisms, the main feature of Cou-
cordia system is an event-based approach used for inter-agent cominunication
and cooperation, supporting both publish-subscribe and nulticast events. The
registration, posting and notification of events are handled by the event man-
ager. The event manager can pass eveut notification to agents on any node in
the Concordia network.

An important function of the event manager is to support Concordia agent
collaboration. The concept of collaboration is very useful since it provides a
number of benefits, such as enabling parallel operation over multiple servers
or multiple networks. Using collaboration, an application can divide a task
into sub-tasks. Those sub-tasks can be carried out in the most appropriate
places. The results of those sub-tasks are then assembled by the collaboration
framework. A decision is made according to the results, which can be used to
determine destination, action, or other appropriate behaviour.



A comparative analysis of several mobile agent systems 105

5. Security

Security is perhaps the most critical aspect of mobile agent systems (sce
e.g. [9]). No mobile agent system can become commercially used unless all of
its security problems are entirely solved and afterwards carefully tested. Three
security issues related to mobile agent systems can be identified:

1. Secure communication and agent transfer
2. Security between hosts and mobile agents

3. Security between mobile agents themselves

The major concern specific to mobile agent systems is the host-agent security.
which can be split into two broad areas: the protection of host resources from
malicious mobile agents, and the protection of mobile agents from malicious
hosts.

The protection of mobile agents from malicious hosts is the critical problem
in the area of the mobile agent system security. The mobile agent is virtually
unprotected from the malicious host, because in order for the agent to run. it
must expose its code and data to the host environment. It is computationally
impossible to protect a mobile ageut from a malicious host, and thus current
researches are looking for alternative, sociological means of enforcing good host
behaviour.

The protection of host resources from malicious mobile agents is however
much more investigated area, and most of the mobile agent systems provide good
security mechanisms, which can be applied at various degrees of granularity.
Resources of the host system neced to be protected from malicious agents, but
at the same time, legitimate agents must be given access to the resources they
need. In this context, the primary problems that have to be addressed in any
mobile agent architecture are:

1. Binding of agents to the local environment
2. Authentication (verification of the agent’s owner identity)

3. Authorization and enforcement of access controls (assignient of resource
limits to the agent, based on its identity, and thercupon enforcement of
those limits)

The essential problem on the system level is the execution of agents in an
isolated environment. By providing a safe binding between the visiting agent
code and the local environment, an agent is disabled to directly access any parts
of the host system outside its restricted execution environment. However, the
agent system may grant some agents special privileges for the outside resource
access. In this way, the agent is enabled to access the resources it needs (in



106 Pesovi¢ D., Budimac Z.

the ways it is authorized to), ensuring at the samne time that it cannot breach
systemn security by accessing resources it is not authorized to use.

Another crucial issue is that of authenticating the source of mobile agents
and granting execution privileges to agents on the basis of how trusted their
source is. Namely, the mobile agent system must provide mechanisins to agent
servers for specifying restricted access rights for agents, what is usually termed
as authorization. The rights assigned usually depend on the agent’s identity
(implying that a secure euthentication facility is necessary), and are determined
by consulting a predefined security policy. In addition, mechanisins for enforcing
the specified rights are also needed — this is the problem of access control.

The techniques cited above are also used for the purpose of enforcing the
inter-agent security. As long as an agent cannot subvert the agent communi-
cation mechanisms and excessively consume or hold host system resources, it
will be unable to affect another agent unless that agent decides to communicate
with it.

The common way for the host to authenticate incoming mobile agents (or
communication requests) is through digital signing. All examined mobile agent
systems, except Mole, use this technique. When an agent is transported, the
message containing it is signed by the sender agent server. The receiver agent
server authenticates the mobile agent message on arrival. If any part of the
agent message was altered in transit, the digital signature is no longer valid.
Similar security mechanism could be used on the inter-agent communication as
well.

5.1. Security in Agent Tcl

Agent Tcl handles tasks of authentication, authorization and enforcement
of access controls using public-key cryptography and secure execiution environ-
ments, which perform authorization checks before each resource access. The
system maintains access control lists at a coarse granularity — all agents arriv-
ing from a particular machine are subject to the same access rules. Agent Tecl
calls upon an external program (PGP3?) to perform authentication checks when
necessary, and for encrypting data in transit. However, cryptographic primitives
are not available to agent programmers.

In Agent Tcl, each agent server includes a security-enforcenent module that
enforces the security policy from the resource managers. When an agent requests
access to a resource, the security module forwards the request to the appropriate
resource manager. The resource manager, which is just a stationary ageut,
checks an access list, decides whether the request should be allowed on the basis
of the authenticated identity of the agent’s owner, and returns the decision back
to the security module. The security module then enforces the decision made.

Agent Tcl enforces security checks by the generalization of the technigque
used by the Safe Tel interpreter. It ensures that agents cannot execute danger-

3 Pretty Good P'rivacy



A comparative analysis of several mobile agent systemns 107

ous operations without the appropriate security mediation. Namely, for each
incoming mobile agent a trusted and untrusted interpreter is created. Agents
run within untrusted interpreters. Commands that access outside resources are
removed from the untrusted interpreter and replaced with links to secure ver-
sions in the trusted interpreter. When an agent invokes a dangerous command,
it is redirected to the trusted interpreter. The trusted interpreter contacts the
appropriate resource manager and allows or rejects the operation depending
on the resource manager’s response. The security policy is user-defined by the
administrator of the server.

5.2. Security in Telescript

The Telescript language provides a very powerful and flexible framework
for enforcing security, not allowing direct execution of potentially dangerous
instructions or direct access to system resources. Agent transfer is authenticated
using RSA and encrypted using RC4.

In Telescript all agents and places have an euthority property. The authority
is a class that defines the individual or organization in the physical world that
the agent or place represents. Agents and places must reveal their authority to
another agent of place on request. They may not falsify or withhold their au-
thority. The network of places is divided into regions under the same authority.
When an agent tries to move from one region to another, the source region must
prove the authority of the agent to the destination region.

The Telescript language also has permits. Authorities limit what agents and
places can do by assigning them permits. Permits impose limits of two kinds.
Qualitative limits are referred to the rights to execute a certain instruction. If
an agent or place tries to exceed such a limit, it is simply prevented from doing
so. Quantitative limits are used to grant the rights to use a certain resource in
a certain amount. If an agent ever tries to violate the conditions of its permit
it is destroyed. A malicious agent threatens not only its own authority but also
those of the place and region it occupies. For this reason Telescript lets each
of these three authorities assign an agent a permit. The agent cau exercise a
particular capability only to the extent that all three of its permits grant that
capability. Thus, an agent’s effective perinit is re-negotiated whenever the agent
travels.

5.3. Security in Java-Based Systems

Java programs run in their own environments. There are security mecha-
nisms built into the Java Virtual Machine instruction set to prevent programs
from accessing outside of their environment. The effect of these mechanisms is
that Java programns run in a sandboz. That is, they are limited to the environ-
ment allocated to them by the Java Virtual Machine, and the Java bytecode
instruction set disallows them from directly accessing anything outside of this
environment. Accesses outside of the sandbox can only be done by using some



108 Pesovié D., Budimac Z.

of the Java libraries (allowing disk access, network access, and printing) or by
calling native methods, so that the Java Security Manager may control which
programs are permitted accesses outside of the sandbox, and the kind of tle
outside access. The security models of all Java-based systems inherit described
functionality of the Security Manager.

5.3.1 Aglets

Aglets have had limited security support: statically specified access rights,
based on only two security categories trusted and untrusted. Later, a more
comprehensive authorization framework has been proposed, but has not yet
been made completely available. The Aglets Framework supports an extensible
layered security model. The first layer of security comes from the Java language
system itself, while in the next layer there is the Aglet security manager (as
a subclass of the Java Security Manager), which also allows agent. developers
to implement their own protection mechanisms. The third and final layer is
the Java security API, which is a framework that nakes it easy to incorporate
security functionality in agents, including cryptography with digital signatures,
encryption, and authentication.

Apglets use an organizational approach, similar to the Telescript’s model.
All agent systems in a certain domain are deemed trustworthy, and the au-
thenticity of the agent is evaluated depending on the domain in which it has
been travelling around. Because of the limited support for encryption in JDI.
the current version of Aglets does not fully implcanent all of the security fea-
tures. However, a reasonable level of sccurity has been provided, comprising
the authentication of users and domains, the integrity-checked connnnunication
. between servers within a domain, and a fine-grained authorization cxtendiug
the JDK 1.2 security model.

Authentication is achieved by using secret keys. All servers belonging to a
domain share a secret key, and can authenticate each other by means of that
secret key using MAC*.

The permissions for aglets are defined in terms of the aglet’s owner and
codebase information. The format of the policy database is designed to comply
with that of the JDK 1.2 specification.

Considering Aglets security issues, it is the right instant to resolve why proxy
objects are really needed. An aglet must go through a proxy ohject to interact
with another aglet, even if both aglets arc on the same agent server. The reason
why aglets are not allowed to directly interact with ouc another is that the aglet’s
event handler and initialization methods are public. These methods should be
invoked only by the agent server, but if an aglet could get a handle to another
aglet, it could invoke that aglet’s event handler or initialization methods. An
aglet could become very confused if another aglet. maliciously or just accidentally
invoked these methods directly.

4 Message Authentication Code - a secure hash value computed from a content and nonce
value



A comparative analysis of several mobile agent systerns 109

5.3.2 Mole

Mole does not address the security issues directly among its basic design
objectives. The Sandbox security model is enforced by implementing a simple
concept of user and systemn agents. Systemn agents are permitted to access system
resources, while user agents have absolutely no access to the underlying system.
except by communicating with system agents. Additionally, Mole provides the
mechanism that enables the implementation of access restrictions. It can be
decided on a particular location basis, which types of agents are allowed on
a place, so that only agents of a permitted type can migrate to that place.
Authentication and encryption facilities are omitted, but they could be relatively
easily added, to a certain extent by using existing mechanisms.

5.3.3 Concordia

Concordia’s security structure provides security based on the end-user’s
rights. The Security Manager is responsible for identifying users, authenticating,
their agents, protecting server resources and ensuring the security and integrity
of agents and their accumulated data objects as the agent moves among, systems.
The security manager is also responsible for authorizing the use of dynamically
loaded Java classes that satisfy the needs of agents.

Agent state is protected during transit, as well as in persistent stores, using
encryption protocols. Concordia provides encryption as a security measure by
using the SSL protocol, although the agent developer cau also plug in its own
encryption scheme.

Servers can easily protect their resources. The security manager screens
accesses using statically specified access control lists based on user identities.
Each agent is associated with a particular user. ind carries a one-way hash of
that user’s password. However, this mechanisii ouly applies to closed systeins,
since each agent server must have access to a global password file for verifying
the agent’s password. For fully-fledged agent systems deployed on the Internet,
strong authentication and security can he provided from external anthorities.

It also addresses fault tolerance requirements via an object persistence mech-
anism that is used for reliable agent transfer, and can be used by agents or
servers to create checkpoints for recovery purposes.

6. Summary

Many of the agent systems developed so far have been research prototypes,
and only a few of these have been employed outside of their own university
or research institute. In this paper, the major research issues of the crucial
significance for the development of niobile-agent programming systeins have
been distinguished. Moreover, several prominent mobile agent systems have
been surveyed, to illustrate the variety of approaches that system designers
have taken to address these issues. The choice of programining nodel varies
from script-based agents, useful for quickly automating simple tasks, to object-
oriented agents, which are better suited for more complex applications.



110 Pesovié D., Budimac Z.

Of the mobile agent systems considered, Telescript is undoubtedly the best
system for implementing mobile agents. It is one of the oldest systems de-
veloped, but certainly the most complete one. The Telescript system directly
addresses each of the issues specified. It has a language which has been de-
signed specifically for this purpose. The problemn with Telescript is that it is a
proprietary software and a closed standard. Moreover, the fact that prograin-
mers have to learn a new language also influences the overall acceptance of the
system.

The Java language is multi-purpose, but it has necessary capabilities for
writing mobile agents. Java is inferior to Telescript in the areas of support
for agent migration, communication between agents and interfacing access to
host computer resources. In the other areas, however, Java at least cquals
Telescript. Java’s advantage over Telescript is that it has an open specification.
The breakdown of a technically impressive system like Telescript indicates that
popular general-purpose languages like Java are more likely to succeed than
special-purpose ones like Telescript.

Java-based systems themselves have different features developed depending
on which aspects the designers have focused their researches. For instance, Mole
provides good communication infrastructure as well as agent naming and find-
ing services, Aglets are currently focused on security problems, while Odyssey is
concerned with agent monitoring and control implementing an audit trail mech-
anism. It is therefore hard to say which of these systems is the most satisfying.

Agent Tcl is a high-level scripting language that has many of Telescript’s
capabilities regarding agent migration and communication. Agent Tcl and Java
systems are not in direct competition, since they offer different capabilities.

The major difficulty preventing the widespread acceptance of the mobile
agent paradigm is the security problems it raises. By our opinion, no current
system solves security problems satisfactorily, and thus mobile agent security
remains an open research area.

So far, designers have paid little attention to application-level issues such
as the ease of agent programming, control and management of agents, dynamic
discovery of resources, etc. Literature on the use of basic templates is only just
starting to appear. As larger and more complex systems of roving agents are de-
ployed, programmers will need reliable control primitives for starting, stopping,
and issuing commands to agents. The agent system itself will have to incor-
porate robustness and fault tolerance mechanisms to allow such applications to
operate over unreliable computer networks.

Mobile agents appear to be on the verge of entering mainstream computing.
There are currently many competing agent systems. Only a few will gain enough
support to enable the vision of mobile agents roaming the Internet become a
reality.

In summary, we find that more work on mobile agent systems is needed,
especially to address security and robustness concerns.



A comparative analysis of several mobile agent systems 111

References

(1]
2
[3]
(4]

(6]

(7]

(8]

(]
(10]
(11)
(12]
(23]
(14]
(15]
(16]
(17]

(18]

Baumann, J., Hohl, F., Rothermel, K., Strasser, M., Mole — Concepts of a
Mobile Agent System, Homepage of the University of Stuttgart, 1997

General Magic, Introduction to the Odyssey API, Homepage of General Magic,
199X

General Magic, Odyssey Frequently Asked Questions, Homepage of General
Magic, 199X

Gray, R. S., Agent Tcl: A Flexible and Secure Mobile Agent System, PhD Thesis.
Dartmouth College, Hanover, NH, USA, 1997

Green, S., Hurst, L., Nangle, B., Cunningham, P., Somers, F., Evans, R., Software
Agents: A review, IAG review, 1997

Harrison, C. G., Chess, D. M., Kershenbaum, A., Mobile Agents: Are they a
good idea?, IBM Research Report, IBM Research Division, Number RC 19887,
1995

Karjoth, G., Lange, D., Oshima, M., A Security Model for Aglets, IEEE Interunet
Computing, pages 68-77, July-August 1997

Karnik, N., Tripathi, A., Design Issues in Mobile Agent Programming Systems.
IEEE Internet Computing, pages 52-61, July-September 1998

Karnik, N., Security in Mobile Agent Systems, PhD Thesis, Available at
http://www.cs.umn.edu/Ajanta/publications.html, 199X

Kiniry, J., Zimmerman, D., A Hands-On Look at Java Mobile Agents, IEEE
Internet Computing, pages 21-30, July-August 1997

Lange, D., Chang, D., IBM Aglets Workbench, Programming Mobile Ageuts in
Java, A White Paper, Homepage of IBM Corporation, 1996

Mitsubishi Electric ITA, Mobile Agent Computing, A White Paper, Homepage
of Horizon Systems Laboratory, 1998

Mitsubishi Electric ITA, Technology at a Glance, Concordia — Java Mobile Agent
Technology, Homepage of Horizon Systems Laboratory, 199X

Oshima, M., Karjoth, G., Ono, K., Aglets Specification 1.1 Draft, Homepage of
IBM Corporation, 1998

Strasser, M., Baumann, J., Hohl, F., Mole -— A Java Based Mobile Agent System,
Homepage of the University of Stuttgart, 1996

Venners, B., Under the Hood: The Architecture of Aglets, Java World, April
1997

Versteeg, S., Languages for Mobile Agents, Available at
http://www.cs.mu.oz.au/Scv/thesis.html, 1997

White, J., Mobile Agent White Paper, Homepage of General Magic, 1996



